메뉴 건너뛰기




Volumn 30, Issue 11, 2009, Pages 1037-1045

Clustering constrained symbolic data

Author keywords

Clustering algorithms; Constraints; Dissimilarity functions; Normal symbolic form; Symbolic Data Analysis

Indexed keywords

COMPUTATION TIME; CONSTRAINTS; DATA ANALYSIS; DISSIMILARITY FUNCTION; DISSIMILARITY FUNCTIONS; DOMAIN KNOWLEDGE; NORMAL SYMBOLIC FORM; POLYNOMIAL-TIME; SYMBOLIC DATA; SYMBOLIC DATA ANALYSIS;

EID: 67649246865     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2009.04.009     Document Type: Article
Times cited : (19)

References (35)
  • 1
    • 33750146674 scopus 로고    scopus 로고
    • Clustering algorithms and Kohonen maps for symbolic data
    • Bock H.-H. Clustering algorithms and Kohonen maps for symbolic data. J. Jpn. Soc. Computat. Statist. 15 (2002) 1-13
    • (2002) J. Jpn. Soc. Computat. Statist. , vol.15 , pp. 1-13
    • Bock, H.-H.1
  • 4
    • 0012393548 scopus 로고    scopus 로고
    • Dynamical clustering algorithm of interval data: Optimization of an adequacy criterion based on Hausdorff distance
    • Sokolowsky, and Bock H.H. (Eds), Springer, Heidelberg
    • Chavent M., and Lechevallier Y. Dynamical clustering algorithm of interval data: Optimization of an adequacy criterion based on Hausdorff distance. In: Sokolowsky, and Bock H.H. (Eds). Classification, Clustering and Data Analysis (2002), Springer, Heidelberg 53-59
    • (2002) Classification, Clustering and Data Analysis , pp. 53-59
    • Chavent, M.1    Lechevallier, Y.2
  • 6
    • 67649286895 scopus 로고    scopus 로고
    • On memory requirement with normal symbolic form
    • Opitz O., and Schwaiger M. (Eds), Springer, Berlin-Heidelberg
    • Csernel M., and De Carvalho F.A.T. On memory requirement with normal symbolic form. In: Opitz O., and Schwaiger M. (Eds). Exploratory Data Analysis in Empirical Research (2002), Springer, Berlin-Heidelberg 22-30
    • (2002) Exploratory Data Analysis in Empirical Research , pp. 22-30
    • Csernel, M.1    De Carvalho, F.A.T.2
  • 7
    • 0033206496 scopus 로고    scopus 로고
    • Usual operations with symbolic data under normal symbolic form
    • Csernel M., and De Carvalho F.A.T. Usual operations with symbolic data under normal symbolic form. Appl. Stoch. Models Bus. Ind. 15 (1999) 241-257
    • (1999) Appl. Stoch. Models Bus. Ind. , vol.15 , pp. 241-257
    • Csernel, M.1    De Carvalho, F.A.T.2
  • 8
    • 0042241641 scopus 로고
    • Proximity coefficients between Boolean symbolic objects
    • Diday E., et al. (Ed), Springer-Verlag, Heildeberg
    • De Carvalho F.A.T. Proximity coefficients between Boolean symbolic objects. In: Diday E., et al. (Ed). New Approaches in Classification and Data Analysis (1994), Springer-Verlag, Heildeberg 387-394
    • (1994) New Approaches in Classification and Data Analysis , pp. 387-394
    • De Carvalho, F.A.T.1
  • 9
    • 0041741247 scopus 로고    scopus 로고
    • Extension based proximities between constrained Boolean symbolic objects
    • Hayashi C., et al. (Ed), Springer-Verlag, Tokyo, Japan
    • De Carvalho F.A.T. Extension based proximities between constrained Boolean symbolic objects. In: Hayashi C., et al. (Ed). Data Science, Classification and Related Methods (1998), Springer-Verlag, Tokyo, Japan 370-378
    • (1998) Data Science, Classification and Related Methods , pp. 370-378
    • De Carvalho, F.A.T.1
  • 10
    • 33845495645 scopus 로고    scopus 로고
    • Fuzzy c-means clustering methods for symbolic interval data
    • De Carvalho F.A.T. Fuzzy c-means clustering methods for symbolic interval data. Pattern Recognition Lett. 28 4 (2007) 423-437
    • (2007) Pattern Recognition Lett. , vol.28 , Issue.4 , pp. 423-437
    • De Carvalho, F.A.T.1
  • 11
    • 62349117695 scopus 로고    scopus 로고
    • Partitional clustering algorithms for symbolic interval data based on single adaptive distances
    • De Carvalho F.A.T., and Lechevallier Y. Partitional clustering algorithms for symbolic interval data based on single adaptive distances. Pattern Recogn. 42 7 (2009) 1223-1236
    • (2009) Pattern Recogn. , vol.42 , Issue.7 , pp. 1223-1236
    • De Carvalho, F.A.T.1    Lechevallier, Y.2
  • 14
    • 33750164227 scopus 로고    scopus 로고
    • Dynamic clustering methods for interval data based on L2 distance
    • De Carvalho F.A.T., Brito P., and Bock H.-H. Dynamic clustering methods for interval data based on L2 distance. Computat. Statist. 21 2 (2006) 231-250
    • (2006) Computat. Statist. , vol.21 , Issue.2 , pp. 231-250
    • De Carvalho, F.A.T.1    Brito, P.2    Bock, H.-H.3
  • 15
    • 0043135897 scopus 로고
    • The symbolic approach in clustering and related methods of data analysis
    • Bock H.H. (Ed), North Holland, Amsterdam
    • Diday E. The symbolic approach in clustering and related methods of data analysis. In: Bock H.H. (Ed). Classification Methods of Data Analysis (1988), North Holland, Amsterdam 673-684
    • (1988) Classification Methods of Data Analysis , pp. 673-684
    • Diday, E.1
  • 16
    • 0019111672 scopus 로고
    • Clustering analysis
    • Fu K.S. (Ed), Springer, Heidelberg
    • Diday E., and Simon J.J. Clustering analysis. In: Fu K.S. (Ed). Digital Pattern Recognition (1976), Springer, Heidelberg 47-94
    • (1976) Digital Pattern Recognition , pp. 47-94
    • Diday, E.1    Simon, J.J.2
  • 19
    • 0004241258 scopus 로고    scopus 로고
    • Chapman and Hall/CRC, Boca Raton, Florida
    • Gordon A.D. Classification (1999), Chapman and Hall/CRC, Boca Raton, Florida
    • (1999) Classification
    • Gordon, A.D.1
  • 20
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • Gowda K.C., and Diday E. Symbolic clustering using a new dissimilarity measure. Pattern Recognition 24 6 (1991) 567-578
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Gowda, K.C.1    Diday, E.2
  • 21
    • 0026831106 scopus 로고
    • Symbolic clustering using a new similarity measure
    • Gowda K.C., and Diday E. Symbolic clustering using a new similarity measure. IEEE Trans. Systems Man Cybernet. 22 (1992) 368-378
    • (1992) IEEE Trans. Systems Man Cybernet. , vol.22 , pp. 368-378
    • Gowda, K.C.1    Diday, E.2
  • 22
    • 0029359322 scopus 로고
    • Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity
    • Gowda K.C., and Ravi T.R. Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition 28 8 (1995) 1277-1282
    • (1995) Pattern Recognition , vol.28 , Issue.8 , pp. 1277-1282
    • Gowda, K.C.1    Ravi, T.R.2
  • 23
    • 0029326165 scopus 로고
    • Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity
    • Gowda K.C., and Ravi T.R. Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition Lett. 16 (1995) 647-652
    • (1995) Pattern Recognition Lett. , vol.16 , pp. 647-652
    • Gowda, K.C.1    Ravi, T.R.2
  • 24
    • 0033279868 scopus 로고    scopus 로고
    • Clustering of symbolic objects using gravitational approach
    • Gowda K.C., and Ravi T.R. Clustering of symbolic objects using gravitational approach. IEEE Trans. Systems Man Cybernet. 29 6 (1999) 888-894
    • (1999) IEEE Trans. Systems Man Cybernet. , vol.29 , Issue.6 , pp. 888-894
    • Gowda, K.C.1    Ravi, T.R.2
  • 25
    • 4644323250 scopus 로고    scopus 로고
    • Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns
    • Guru D.S., and Kiranagi B.B. Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns. Pattern Recognition 38 (2005) 151-256
    • (2005) Pattern Recognition , vol.38 , pp. 151-256
    • Guru, D.S.1    Kiranagi, B.B.2
  • 26
    • 2942618322 scopus 로고    scopus 로고
    • Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns
    • Guru D.S., Kiranagi B.B., and Nagabhushan P. Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recognition Lett. 25 (2004) 1203-1213
    • (2004) Pattern Recognition Lett. , vol.25 , pp. 1203-1213
    • Guru, D.S.1    Kiranagi, B.B.2    Nagabhushan, P.3
  • 27
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L., and Arabie P. Comparing partitions. J. Classif. 2 (1985) 193-218
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 28
    • 0028408227 scopus 로고
    • Generalized Minkowski metrics for mixed feature type data analysis
    • Ichino M., and Yaguchi H. Generalized Minkowski metrics for mixed feature type data analysis. IEEE Trans. Systems Man Cybernet. 24 4 (1994) 698-708
    • (1994) IEEE Trans. Systems Man Cybernet. , vol.24 , Issue.4 , pp. 698-708
    • Ichino, M.1    Yaguchi, H.2
  • 30
    • 67649247134 scopus 로고    scopus 로고
    • Lechevallier, Y., 1974. Optimisation de quelques criteres en classification automatique et application a l'etude des modifications des proteines seriques en pathologie clinique. Thèse de 3eme cycle. Universite Paris-VI.
    • Lechevallier, Y., 1974. Optimisation de quelques criteres en classification automatique et application a l'etude des modifications des proteines seriques en pathologie clinique. Thèse de 3eme cycle. Universite Paris-VI.
  • 31
    • 0042341570 scopus 로고    scopus 로고
    • Clustering and its validation in a symbolic framework
    • Mali K., and Mitra S. Clustering and its validation in a symbolic framework. Pattern Recognition Lett. 24 14 (2003) 2367-2376
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.14 , pp. 2367-2376
    • Mali, K.1    Mitra, S.2
  • 32
    • 0002271592 scopus 로고    scopus 로고
    • Clustering validation: Results and implications for applied analysis
    • Arabie P., De Hubert L.J., and Soete G. (Eds), Word Scientific, Singapore
    • Milligan G.W. Clustering validation: Results and implications for applied analysis. In: Arabie P., De Hubert L.J., and Soete G. (Eds). Clustering and Classification (1996), Word Scientific, Singapore 341-375
    • (1996) Clustering and Classification , pp. 341-375
    • Milligan, G.W.1
  • 33
    • 0029415780 scopus 로고
    • A conceptual version of the K-means algorithm
    • Ralambondrainy H. A conceptual version of the K-means algorithm. Pattern Recognition Lett. 16 (1995) 1147-1157
    • (1995) Pattern Recognition Lett. , vol.16 , pp. 1147-1157
    • Ralambondrainy, H.1
  • 34
    • 0346724786 scopus 로고    scopus 로고
    • Clustering of interval data based on city-block distances
    • Souza R.M.C.R., and De Carvalho F.A.T. Clustering of interval data based on city-block distances. Pattern Recognition Lett. 25 3 (2004) 353-365
    • (2004) Pattern Recognition Lett. , vol.25 , Issue.3 , pp. 353-365
    • Souza, R.M.C.R.1    De Carvalho, F.A.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.