-
2
-
-
0000275022
-
Prediction games and arcing algorithms
-
L. Breiman. Prediction games and arcing algorithms. Neural Comp., 11(7):1493-1517, 1999.
-
(1999)
Neural Comp
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
3
-
-
0036161257
-
Linear programming boosting via column generation
-
DOI 10.1023/A:1012470815092
-
A. Demiriz, K. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation. Mach. Learn., 46(1-3):225-254, 2002. (Pubitemid 34129970)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
4
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comp.&Syst. Sci., 55(1):119-139, 1997. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
5
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting with discussion and a rejoinder by the authors
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Statist., 28(2):337-407, 2000.
-
(2000)
Ann. Statist
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
6
-
-
0031638384
-
Boosting in the limit: Maximizing the margin of learned ensembles.
-
A. J. Grove and D. Schuurmans. Boosting in the limit: maximizing the margin of learned ensembles. In Proc. National Conf. Artificial Intell., pages 692-699, Madison,Wisconsin, USA, 1998.
-
(1998)
Proc. National Conf. Artificial Intell.
, pp. 692-699
-
-
Grove, A.J.1
Schuurmans, D.2
-
7
-
-
4344568145
-
FloatBoost learning and statistical face detection
-
S. Z. Li and Z. Zhang. FloatBoost learning and statistical face detection. IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1112-1123, 2004.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.26
, Issue.9
, pp. 1112-1123
-
-
Li, S.Z.1
Zhang, Z.2
-
8
-
-
84898978212
-
Boosting algorithms as gradient descent
-
L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent. In Proc. Adv. Neural Inf. Process. Syst., pages 512-518, 2000.
-
(2000)
Proc. Adv. Neural Inf. Process. Syst
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
9
-
-
0342502195
-
Soft margins for AdaBoost
-
DOI 10.1023/A:1007618119488
-
G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Mach. Learn., 42(3):287-320, 2001. data sets are available at http://theoval.cmp.uea.ac.uk/ ∼gcc/matlab/index.shtml. (Pubitemid 32188795)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.-R.3
-
10
-
-
21844445229
-
Efficient margin maximizing with boosting
-
G. Rätsch andM. K.Warmuth. Efficient margin maximizing with boosting. J. Mach. Learn. Res., 6:2131-2152, 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 2131-2152
-
-
Rätsch, G.1
Warmuth, M.K.2
-
11
-
-
34250705806
-
How boosting the margin can also boost classifier complexity.
-
Pittsburgh, Pennsylvania, USA
-
11] L. Reyzin and R. E. Schapire. How boosting the margin can also boost classifier complexity. In Proc. Int. Conf. Mach. Learn., Pittsburgh, Pennsylvania, USA, 2006.
-
(2006)
Proc. Int. Conf. Mach. Learn
-
-
Reyzin, L.1
Schapire, R.E.2
-
12
-
-
84957085334
-
Theoretical views of boosting and applications
-
R. E. Schapire. Theoretical views of boosting and applications. In Proc. Int. Conf. Algorithmic Learn. Theory, pages 13-25, London, UK, 1999. Springer-Verlag.
-
(1999)
Proc. Int. Conf. Algorithmic Learn. Theory
, pp. 13-25
-
-
Schapire, R.E.1
-
13
-
-
2142812371
-
Robust real-time face detection
-
P. Viola and M. J. Jones. Robust real-time face detection. Int. J. Comp. Vis., 57(2):137-154, 2004.
-
(2004)
Int. J. Comp. Vis
, vol.57
, Issue.2
, pp. 137-154
-
-
Viola, P.1
Jones, M.J.2
|