메뉴 건너뛰기




Volumn 159, Issue 4, 2008, Pages 449-459

A proposed method for learning rule weights in fuzzy rule-based classification systems

Author keywords

Data mining; Fuzzy systems; Pattern recognition; Rule weight learning

Indexed keywords

DATA MINING; FUZZY SYSTEMS; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 37349070770     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2007.08.007     Document Type: Article
Times cited : (65)

References (26)
  • 1
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
    • Abe S., and Lan M.S. A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Trans. Fuzzy Systems 3 1 (1995) 18-28
    • (1995) IEEE Trans. Fuzzy Systems , vol.3 , Issue.1 , pp. 18-28
    • Abe, S.1    Lan, M.S.2
  • 2
    • 0031209094 scopus 로고    scopus 로고
    • A fuzzy classifier with ellipsoidal regions
    • Abe S., and Thawonmas R. A fuzzy classifier with ellipsoidal regions. IEEE Trans. Fuzzy Systems 5 3 (1997) 358-368
    • (1997) IEEE Trans. Fuzzy Systems , vol.5 , Issue.3 , pp. 358-368
    • Abe, S.1    Thawonmas, R.2
  • 4
    • 0035426683 scopus 로고    scopus 로고
    • Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
    • Casillas J., Cordón O., Del Jesus M.J., and Herrera F. Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems. Inform. Sci. 136 1-4 (2001) 135-157
    • (2001) Inform. Sci. , vol.136 , Issue.1-4 , pp. 135-157
    • Casillas, J.1    Cordón, O.2    Del Jesus, M.J.3    Herrera, F.4
  • 6
    • 0032655554 scopus 로고    scopus 로고
    • A proposal on reasoning methods in fuzzy rule-based classification systems
    • Cordon O., del Jesus M.J., and Herrera F. A proposal on reasoning methods in fuzzy rule-based classification systems. Internat. J. Approx. Reason. 20 (1999) 21-45
    • (1999) Internat. J. Approx. Reason. , vol.20 , pp. 21-45
    • Cordon, O.1    del Jesus, M.J.2    Herrera, F.3
  • 7
    • 9644252808 scopus 로고    scopus 로고
    • Elicitation of fuzzy association rules from positive and negative examples
    • De Cock M., Cornelis C., and Kerre E.E. Elicitation of fuzzy association rules from positive and negative examples. Fuzzy Sets and Systems 149 1 (2005) 73-85
    • (2005) Fuzzy Sets and Systems , vol.149 , Issue.1 , pp. 73-85
    • De Cock, M.1    Cornelis, C.2    Kerre, E.E.3
  • 8
    • 37349122608 scopus 로고    scopus 로고
    • T. Fawcett, ROC graphs: notes and practical considerations for researchers, Technical Report HPL-2003-4, HP Labs, 2003.
  • 9
    • 0035426324 scopus 로고    scopus 로고
    • Approximative fuzzy rules approaches for classification with hybrid-GA techniques
    • Gómez-Skarmeta A.F., Valdés M., Jiménez F., and Marín-Blázquez J.G. Approximative fuzzy rules approaches for classification with hybrid-GA techniques. Inform. Sci. 136 1-4 (2001) 193-214
    • (2001) Inform. Sci. , vol.136 , Issue.1-4 , pp. 193-214
    • Gómez-Skarmeta, A.F.1    Valdés, M.2    Jiménez, F.3    Marín-Blázquez, J.G.4
  • 10
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: a genetic learning system based on an iterative approach
    • Gonzalez A., and Perez R. SLAVE: a genetic learning system based on an iterative approach. IEEE Trans. Fuzzy Systems 7 2 (1999) 176-191
    • (1999) IEEE Trans. Fuzzy Systems , vol.7 , Issue.2 , pp. 176-191
    • Gonzalez, A.1    Perez, R.2
  • 11
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • Ishibuchi H., Nakashima T., and Morisawa T. Voting in fuzzy rule-based systems for pattern classification problems. Fuzzy Sets and Systems 103 2 (1999) 223-238
    • (1999) Fuzzy Sets and Systems , vol.103 , Issue.2 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 12
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • Ishibuchi H., Nakashima T., and Murata T. Three-objective genetics-based machine learning for linguistic rule extraction. Inform. Sci. 136 1-4 (2001) 109-133
    • (2001) Inform. Sci. , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 13
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • Ishibuchi H., Nozaki K., and Tanaka H. Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets and Systems 52 1 (1992) 21-32
    • (1992) Fuzzy Sets and Systems , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 14
    • 3543091439 scopus 로고    scopus 로고
    • Comparison of heuristic criteria for fuzzy rule selection in classification problems
    • Ishibuchi H., and Yamamoto T. Comparison of heuristic criteria for fuzzy rule selection in classification problems. Fuzzy Optimization and Decision Making 3 2 (2004) 119-139
    • (2004) Fuzzy Optimization and Decision Making , vol.3 , Issue.2 , pp. 119-139
    • Ishibuchi, H.1    Yamamoto, T.2
  • 15
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • Ishibuchi H., and Yamamoto T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems 141 1 (2004) 59-88
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.1 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 16
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • Ishibuchi H., and Yamamoto T. Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Systems 13 4 (2005) 428-435
    • (2005) IEEE Trans. Fuzzy Systems , vol.13 , Issue.4 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 17
    • 1942452386 scopus 로고    scopus 로고
    • Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves
    • Lachiche N., and Flach P. Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves. Proc. 20th Internat. Conf. on Machine Learning (ICML'03) (2003) 416-423
    • (2003) Proc. 20th Internat. Conf. on Machine Learning (ICML'03) , pp. 416-423
    • Lachiche, N.1    Flach, P.2
  • 18
    • 33846238469 scopus 로고    scopus 로고
    • A weighting function for improving fuzzy classification systems performance
    • Mansoori E.G., Zolghadri M.J., and Katebi S.D. A weighting function for improving fuzzy classification systems performance. Fuzzy Sets and Systems 158 5 (2007) 583-591
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.5 , pp. 583-591
    • Mansoori, E.G.1    Zolghadri, M.J.2    Katebi, S.D.3
  • 19
    • 0029254092 scopus 로고
    • Improving classification performance using fuzzy MLP and two-level selective partitioning of the feature space
    • Mitra S., and Kuncheva L.I. Improving classification performance using fuzzy MLP and two-level selective partitioning of the feature space. Fuzzy Sets and Systems 70 1 (1995) 1-13
    • (1995) Fuzzy Sets and Systems , vol.70 , Issue.1 , pp. 1-13
    • Mitra, S.1    Kuncheva, L.I.2
  • 20
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • Nauck D., and Kruse R. A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems 89 3 (1997) 277-288
    • (1997) Fuzzy Sets and Systems , vol.89 , Issue.3 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 21
    • 0031627851 scopus 로고    scopus 로고
    • How the learning of rule weights affects the interpretability of fuzzy systems
    • Nauck D., and Kruse R. How the learning of rule weights affects the interpretability of fuzzy systems. Proc. 7th IEEE Internat. Conf. on Fuzzy Systems (1998) 1235-1240
    • (1998) Proc. 7th IEEE Internat. Conf. on Fuzzy Systems , pp. 1235-1240
    • Nauck, D.1    Kruse, R.2
  • 22
    • 0030214780 scopus 로고    scopus 로고
    • Adaptive fuzzy rule-based classification systems
    • Nozaki K., Ishibuchi H., and Tanaka H. Adaptive fuzzy rule-based classification systems. IEEE Trans. Fuzzy Systems 4 3 (1996) 238-250
    • (1996) IEEE Trans. Fuzzy Systems , vol.4 , Issue.3 , pp. 238-250
    • Nozaki, K.1    Ishibuchi, H.2    Tanaka, H.3
  • 23
    • 0037361892 scopus 로고    scopus 로고
    • Learning fuzzy classification rules from labeled data
    • Roubos J.A., Setnes M., and Abonyi J. Learning fuzzy classification rules from labeled data. Inform. Sci. 150 1-2 (2003) 77-93
    • (2003) Inform. Sci. , vol.150 , Issue.1-2 , pp. 77-93
    • Roubos, J.A.1    Setnes, M.2    Abonyi, J.3
  • 26
    • 33947267482 scopus 로고    scopus 로고
    • Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis
    • Zolghadri M.J., and Mansoori E.G. Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis. Inform. Sci. 177 11 (2007) 2296-2307
    • (2007) Inform. Sci. , vol.177 , Issue.11 , pp. 2296-2307
    • Zolghadri, M.J.1    Mansoori, E.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.