메뉴 건너뛰기




Volumn 2, Issue , 2008, Pages 557-563

Combining clustering and bayesian network for gene network inference

Author keywords

[No Author keywords available]

Indexed keywords

AKAIKE INFORMATION CRITERION; BAYESIAN NETWORK LEARNING; BAYESIAN NETWORK STRUCTURE; COMPLEX PROBLEMS; DATA SETS; GENE EXPRESSION PROFILES; GENE INTERACTIONS; GENE NETWORK INFERENCE; GENE NETWORKS; GENE ONTOLOGY; HILL CLIMBING; K-MEANS CLUSTERING; MACHINE-LEARNING; MULTI-DISCIPLINARY RESEARCH; NETWORK CONSTRUCTION; POSITIVE INTERACTION; SEARCH STRATEGIES;

EID: 67449128468     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISDA.2008.183     Document Type: Conference Paper
Times cited : (5)

References (26)
  • 3
    • 13844253637 scopus 로고    scopus 로고
    • A bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • M. J. Beal, F. Falciani, Z. Ghahramani, C. Rangel, and D. L. Wild. A bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21(3):349-356, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 6
    • 3142707096 scopus 로고    scopus 로고
    • Data Analysis Tools for DNA Microarrays
    • Chapman & Hall/CRC
    • S. Draghici. Data Analysis Tools for DNA Microarrays. Mathematical Biology and MEdicine. Chapman & Hall/CRC, 2003.
    • (2003) Mathematical Biology and MEdicine
    • Draghici, S.1
  • 7
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303(5659):799-805, 2004.
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 10
    • 0003846041 scopus 로고
    • A tutorial on learning with bayesian networks
    • Technical Report MSR-TR-95-06, Microsoft Research
    • D. Heckerman. A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 1995.
    • (1995)
    • Heckerman, D.1
  • 11
    • 0348013431 scopus 로고    scopus 로고
    • Clustering gene expression pattern and extracting relationship in gene network based on artificial neural networks
    • J. Huang, H. Shimizu, and S. Shioya. Clustering gene expression pattern and extracting relationship in gene network based on artificial neural networks. Journal of Bioscience and Bioengineering, 96:421-428, 2003.
    • (2003) Journal of Bioscience and Bioengineering , vol.96 , pp. 421-428
    • Huang, J.1    Shimizu, H.2    Shioya, S.3
  • 12
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks
    • November
    • D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks. Bioinformatics, 19(17):2271- 2282, November 2003.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 14
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • S. Kim, S. Imoto, and S. Miyano. Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 75(1-3):57-65, 2004.
    • (2004) Biosystems , vol.75 , Issue.1-3 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 15
    • 41549138299 scopus 로고    scopus 로고
    • An improved, biasreduced probabilistic functional gene network of bakers yeast, saccharomyces cerevisiae
    • 2((10):1-14
    • I. Lee, Z. Li, and E. M. Marcotte. An improved, biasreduced probabilistic functional gene network of bakers yeast, saccharomyces cerevisiae. PLoS ONE, 2((10):1-14, 2007.
    • (2007) PLoS ONE
    • Lee, I.1    Li, Z.2    Marcotte, E.M.3
  • 16
    • 20744441547 scopus 로고    scopus 로고
    • Modularized learning of genetic interaction networks from biological annotations and mrna expression data
    • P. H. Lee and D. Lee. Modularized learning of genetic interaction networks from biological annotations and mrna expression data. Bioinformatics, 21(11):2739-2747, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2739-2747
    • Lee, P.H.1    Lee, D.2
  • 17
    • 2442718023 scopus 로고    scopus 로고
    • Using proteinprotein interactions for refining gene networks estimated from microarray data by bayesian networks
    • N. Nariai, S. Kim, S. Imoto, and S. Miyano. Using proteinprotein interactions for refining gene networks estimated from microarray data by bayesian networks. Pac Symp Biocomput, pages 336-347, 2004.
    • (2004) Pac Symp Biocomput , pp. 336-347
    • Nariai, N.1    Kim, S.2    Imoto, S.3    Miyano, S.4
  • 20
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K.Anders, M. Eisen, D. B. PO. Brown, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 9(12):3273-3297, 1998.
    • (1998) Mol Biol Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Zhang, M.3    Iyer, V.4    Anders, K.5    Eisen, M.6    Brown, D.B.P.7    Futcher, B.8
  • 21
    • 0141993704 scopus 로고    scopus 로고
    • A genecoexpression network for global discovery of conserved genetic modules
    • October
    • J. M. Stuart, E. Segal, D. Koller, and S. K. Kim. A genecoexpression network for global discovery of conserved genetic modules. Science, 302(5643):249-255, October 2003.
    • (2003) Science , vol.302 , Issue.5643 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 22
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining bayesian network model with promoter element detection
    • Y. Tamada, S. Kim, H. Bannai, S. Imoto, K. Tashiro, S. Kuhara, and S. Miyano. Estimating gene networks from gene expression data by combining bayesian network model with promoter element detection. Bioinformatics, 19 Suppl 2, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 25
    • 36448970861 scopus 로고    scopus 로고
    • Inferring transcriptional regulatory networks from highthroughput data
    • R.-S. S. Wang, Y. Wang, X.-S. S. Zhang, and L. Chen. Inferring transcriptional regulatory networks from highthroughput data. Bioinformatics, 2007.
    • (2007) Bioinformatics
    • Wang, R.-S.S.1    Wang, Y.2    Zhang, X.-S.S.3    Chen, L.4
  • 26
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data
    • M. Zou and S. D. Conzen. A new dynamic bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21(1):71-79, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.