-
2
-
-
0034069495
-
Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium
-
M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J.M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig,M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25(1):25-29, 2000.
-
(2000)
Nat Genet
, vol.25
, Issue.1
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
Botstein, D.4
Butler, H.5
Cherry, J.M.6
Davis, A.P.7
Dolinski, K.8
Dwight, S.S.9
Eppig, J.T.10
Harris, M.A.11
Hill, D.P.12
Issel-Tarver, L.13
Kasarskis, A.14
Lewis, S.15
Matese, J.C.16
Richardson, J.E.17
Ringwald, M.18
Rubin, G.M.19
Sherlock, G.20
more..
-
3
-
-
13844253637
-
A bayesian approach to reconstructing genetic regulatory networks with hidden factors
-
M. J. Beal, F. Falciani, Z. Ghahramani, C. Rangel, and D. L. Wild. A bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21(3):349-356, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.3
, pp. 349-356
-
-
Beal, M.J.1
Falciani, F.2
Ghahramani, Z.3
Rangel, C.4
Wild, D.L.5
-
4
-
-
0043130707
-
-
M. J. de Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, and S. Miyano. Inferring gene regulatory networks from timeordered gene expression data of bacillus subtilis using differential equations. 8:17-28, 2003.
-
(2003)
Inferring gene regulatory networks from timeordered gene expression data of bacillus subtilis using differential equations
, vol.8
, pp. 17-28
-
-
de Hoon, M.J.1
Imoto, S.2
Kobayashi, K.3
Ogasawara, N.4
Miyano, S.5
-
6
-
-
3142707096
-
Data Analysis Tools for DNA Microarrays
-
Chapman & Hall/CRC
-
S. Draghici. Data Analysis Tools for DNA Microarrays. Mathematical Biology and MEdicine. Chapman & Hall/CRC, 2003.
-
(2003)
Mathematical Biology and MEdicine
-
-
Draghici, S.1
-
7
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models
-
N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303(5659):799-805, 2004.
-
(2004)
Science
, vol.303
, Issue.5659
, pp. 799-805
-
-
Friedman, N.1
-
9
-
-
0036522639
-
Bayesian methods for elucidating genetic regulatory networks
-
A. J. Hartemink, D. K. Gifford, T. S. Jaakkola, and R. A. Young. Bayesian methods for elucidating genetic regulatory networks. IEEE Intelligent Systems, 17(2):37-43, 2002.
-
(2002)
IEEE Intelligent Systems
, vol.17
, Issue.2
, pp. 37-43
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
10
-
-
0003846041
-
A tutorial on learning with bayesian networks
-
Technical Report MSR-TR-95-06, Microsoft Research
-
D. Heckerman. A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 1995.
-
(1995)
-
-
Heckerman, D.1
-
11
-
-
0348013431
-
Clustering gene expression pattern and extracting relationship in gene network based on artificial neural networks
-
J. Huang, H. Shimizu, and S. Shioya. Clustering gene expression pattern and extracting relationship in gene network based on artificial neural networks. Journal of Bioscience and Bioengineering, 96:421-428, 2003.
-
(2003)
Journal of Bioscience and Bioengineering
, vol.96
, pp. 421-428
-
-
Huang, J.1
Shimizu, H.2
Shioya, S.3
-
12
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks
-
November
-
D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks. Bioinformatics, 19(17):2271- 2282, November 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2271-2282
-
-
Husmeier, D.1
-
13
-
-
0012969768
-
-
S. Imoto, K. Sunyong, T. Goto, S. Aburatani, K. Tashiro, S. Kuhara, and S. Miyano. Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. page 219, 2002.
-
(2002)
Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
, pp. 219
-
-
Imoto, S.1
Sunyong, K.2
Goto, T.3
Aburatani, S.4
Tashiro, K.5
Kuhara, S.6
Miyano, S.7
-
14
-
-
3042738945
-
Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
-
S. Kim, S. Imoto, and S. Miyano. Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 75(1-3):57-65, 2004.
-
(2004)
Biosystems
, vol.75
, Issue.1-3
, pp. 57-65
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
15
-
-
41549138299
-
An improved, biasreduced probabilistic functional gene network of bakers yeast, saccharomyces cerevisiae
-
2((10):1-14
-
I. Lee, Z. Li, and E. M. Marcotte. An improved, biasreduced probabilistic functional gene network of bakers yeast, saccharomyces cerevisiae. PLoS ONE, 2((10):1-14, 2007.
-
(2007)
PLoS ONE
-
-
Lee, I.1
Li, Z.2
Marcotte, E.M.3
-
16
-
-
20744441547
-
Modularized learning of genetic interaction networks from biological annotations and mrna expression data
-
P. H. Lee and D. Lee. Modularized learning of genetic interaction networks from biological annotations and mrna expression data. Bioinformatics, 21(11):2739-2747, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.11
, pp. 2739-2747
-
-
Lee, P.H.1
Lee, D.2
-
17
-
-
2442718023
-
Using proteinprotein interactions for refining gene networks estimated from microarray data by bayesian networks
-
N. Nariai, S. Kim, S. Imoto, and S. Miyano. Using proteinprotein interactions for refining gene networks estimated from microarray data by bayesian networks. Pac Symp Biocomput, pages 336-347, 2004.
-
(2004)
Pac Symp Biocomput
, pp. 336-347
-
-
Nariai, N.1
Kim, S.2
Imoto, S.3
Miyano, S.4
-
20
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
-
P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K.Anders, M. Eisen, D. B. PO. Brown, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 9(12):3273-3297, 1998.
-
(1998)
Mol Biol Cell
, vol.9
, Issue.12
, pp. 3273-3297
-
-
Spellman, P.1
Sherlock, G.2
Zhang, M.3
Iyer, V.4
Anders, K.5
Eisen, M.6
Brown, D.B.P.7
Futcher, B.8
-
21
-
-
0141993704
-
A genecoexpression network for global discovery of conserved genetic modules
-
October
-
J. M. Stuart, E. Segal, D. Koller, and S. K. Kim. A genecoexpression network for global discovery of conserved genetic modules. Science, 302(5643):249-255, October 2003.
-
(2003)
Science
, vol.302
, Issue.5643
, pp. 249-255
-
-
Stuart, J.M.1
Segal, E.2
Koller, D.3
Kim, S.K.4
-
22
-
-
3242891560
-
Estimating gene networks from gene expression data by combining bayesian network model with promoter element detection
-
Y. Tamada, S. Kim, H. Bannai, S. Imoto, K. Tashiro, S. Kuhara, and S. Miyano. Estimating gene networks from gene expression data by combining bayesian network model with promoter element detection. Bioinformatics, 19 Suppl 2, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.SUPPL. 2
-
-
Tamada, Y.1
Kim, S.2
Bannai, H.3
Imoto, S.4
Tashiro, K.5
Kuhara, S.6
Miyano, S.7
-
23
-
-
0033028596
-
Systematic determination of genetic network architecture
-
S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic determination of genetic network architecture. Nature, 22:5, 1999.
-
(1999)
Nature
, vol.22
, pp. 5
-
-
Tavazoie, S.1
Hughes, J.D.2
Campbell, M.J.3
Cho, R.J.4
Church, G.M.5
-
26
-
-
12744261506
-
A new dynamic bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data
-
M. Zou and S. D. Conzen. A new dynamic bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21(1):71-79, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.1
, pp. 71-79
-
-
Zou, M.1
Conzen, S.D.2
|