-
2
-
-
0004146940
-
-
2nd edn, Prentice-Hall, Englewood Cliffs, NJ
-
A. Dimarogonas, Vibration for Engineers, 2nd edn. (Prentice-Hall, Englewood Cliffs, NJ, 1996).
-
(1996)
Vibration for Engineers
-
-
Dimarogonas, A.1
-
3
-
-
33644517521
-
Free vibrations of a mass grounded by linear and nonlinear springs in series
-
S. Telli and O. Kopmaz, Free vibrations of a mass grounded by linear and nonlinear springs in series, J. Sound Vibr. 289, 689 (2006).
-
(2006)
J. Sound Vibr
, vol.289
, pp. 689
-
-
Telli, S.1
Kopmaz, O.2
-
5
-
-
0003662274
-
-
Clarendon, Oxford, translated by Wolfram Stadler
-
P. Hagedorn, Nonlinear Oscillations (Clarendon, Oxford, 1988), translated by Wolfram Stadler.
-
(1988)
Nonlinear Oscillations
-
-
Hagedorn, P.1
-
6
-
-
35748957246
-
Application of He's homo-topy Perturbation method to the relativistic (An) harmonic Oscillator. I: Comparison between approximate and exact Frequencies
-
A. Beléndez, C. Pascual, A. Márquez and D. I. Méndez, Application of He's homo-topy Perturbation method to the relativistic (An) harmonic Oscillator. I: Comparison between approximate and exact Frequencies, Int. J. Nonlin. Sci. Numer. Simul. 8, 483 (2007).
-
(2007)
Int. J. Nonlin. Sci. Numer. Simul
, vol.8
, pp. 483
-
-
Beléndez, A.1
Pascual, C.2
Márquez, A.3
Méndez, D.I.4
-
7
-
-
34249893388
-
Approximate solutions of K(2, 2), KdV and modified KdV equations by variational iteration method, homotopy Perturbation method and homotopy analysis method, relation of a nonlinear oscillator with discontinuities
-
H. Tari, D. D. Ganji and M. Rostamian, Approximate solutions of K(2, 2), KdV and modified KdV equations by variational iteration method, homotopy Perturbation method and homotopy analysis method, relation of a nonlinear oscillator with discontinuities, Int. J. Nonlin. Sci. Numer. Simul. 8, 203 (2007).
-
(2007)
Int. J. Nonlin. Sci. Numer. Simul
, vol.8
, pp. 203
-
-
Tari, H.1
Ganji, D.D.2
Rostamian, M.3
-
10
-
-
17844387391
-
Homotopy perturbation method for bifurcation on nonlinear problems, Int
-
J. H. He, Homotopy perturbation method for bifurcation on nonlinear problems, Int. J. Nonline. Sci. Numer. Simu.. 6, 207 (2005).
-
(2005)
J. Nonline. Sci. Numer. Simu
, vol.6
, pp. 207
-
-
He, J.H.1
-
11
-
-
33748919061
-
Application of He's Homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int
-
D. D. Ganji and A. Sadighi, Application of He's Homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. Nonlin. Sci. Numer. Simu.. 7(4), 411 (2006).
-
(2006)
J. Nonlin. Sci. Numer. Simu
, vol.7
, Issue.4
, pp. 411
-
-
Ganji, D.D.1
Sadighi, A.2
-
12
-
-
1242287587
-
The homotopy perturbation method for nonlinear oscillators with discontinuities
-
J. H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Compu.. 151, 287 (2004).
-
(2004)
Appl. Math. Compu
, vol.151
, pp. 287
-
-
He, J.H.1
-
13
-
-
36048963233
-
1/3 force nonlinear oscillator, Phy
-
1/3 force nonlinear oscillator, Phy.. Let.. A 371, 421 (2007).
-
(2007)
Let.. A
, vol.371
, pp. 421
-
-
Bel'endez, A.1
Pascual, C.2
Gallego, S.3
Ortuño, M.4
Neipp, C.5
-
15
-
-
0036489498
-
Modified Lindstedt-Poincar'e methods for some strongly nonlinear oscillations, Part I: Expansion of a constant, Int
-
J. H. He, Modified Lindstedt-Poincar'e methods for some strongly nonlinear oscillations, Part I: expansion of a constant, Int. J. Nonlin. Mec.. 37, 309 (2002).
-
(2002)
J. Nonlin. Mec
, vol.37
, pp. 309
-
-
He, J.H.1
-
16
-
-
33846210009
-
-
1/3 force by He's modified Lindstedt-Poincar'e method, J. Sound Vibr. 301, 415 (2007).
-
1/3 force by He's modified Lindstedt-Poincar'e method, J. Sound Vibr. 301, 415 (2007).
-
-
-
-
17
-
-
34748917561
-
Nonlinear oscillator with discontinuity by parameter-expansion method
-
S. Q. Wang and J. H. He, Nonlinear oscillator with discontinuity by parameter-expansion method, Chaos, Solitons and Fractals 35, 688 (2008).
-
(2008)
Chaos, Solitons and Fractals
, vol.35
, pp. 688
-
-
Wang, S.Q.1
He, J.H.2
-
18
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
J. H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B 20, 1141 (2006).
-
(2006)
Int. J. Mod. Phys. B
, vol.20
, pp. 1141
-
-
He, J.H.1
-
19
-
-
34249996463
-
Application of parameter-expanding method to strongly nonlinear oscillators
-
D. H. Shou and J. H. He, Application of parameter-expanding method to strongly nonlinear oscillators, Int. J. Nonlin. Sci. Numer. Simul. 8(1), 121 (2007).
-
(2007)
Int. J. Nonlin. Sci. Numer. Simul
, vol.8
, Issue.1
, pp. 121
-
-
Shou, D.H.1
He, J.H.2
-
20
-
-
0003053851
-
Some new approaches to duffing equation with strongly and high order non-linearity (II) parameterized perturbation technique
-
J. H. He, Some new approaches to duffing equation with strongly and high order non-linearity (II) parameterized perturbation technique, Commun. Nonlin. Sci. Numer. Simul. 4, 81 (1999).
-
(1999)
Commun. Nonlin. Sci. Numer. Simul
, vol.4
, pp. 81
-
-
He, J.H.1
-
21
-
-
0002734020
-
A review on some new recently developed nonlinear analytical techniques
-
J. H. He, A review on some new recently developed nonlinear analytical techniques, Int. J. Nonlin. Sci. Numer. Simul. 1, 51 (2000).
-
(2000)
Int. J. Nonlin. Sci. Numer. Simul
, vol.1
, pp. 51
-
-
He, J.H.1
-
22
-
-
33846309237
-
Free vibration analysis of a rotating beam with nonlinear spring and mass system
-
S. K. Das, P. C. Ray and G. Pohit, Free vibration analysis of a rotating beam with nonlinear spring and mass system, J. Sound Vibr. 301, 165 (2007).
-
(2007)
J. Sound Vibr
, vol.301
, pp. 165
-
-
Das, S.K.1
Ray, P.C.2
Pohit, G.3
-
23
-
-
30344474624
-
Saturation and resonance of nonlinear system under bounded noise excitation
-
H. W. Rong, X. D. Wang, W. Xu and T. Fang, Saturation and resonance of nonlinear system under bounded noise excitation, J. Sound Vibr. 291, 48 (2006).
-
(2006)
J. Sound Vibr
, vol.291
, pp. 48
-
-
Rong, H.W.1
Wang, X.D.2
Xu, W.3
Fang, T.4
-
24
-
-
33746283765
-
Harmonic balance approach to limit cycles for nonlinear jerk equations
-
H. P. W. Gottlieb, Harmonic balance approach to limit cycles for nonlinear jerk equations, J. Sound Vibr. 297, 243 (2006).
-
(2006)
J. Sound Vibr
, vol.297
, pp. 243
-
-
Gottlieb, H.P.W.1
-
25
-
-
34547852244
-
A new method based on the harmonic balance method for nonlinear oscillators
-
Y. M. Chen and J. K. Liu, A new method based on the harmonic balance method for nonlinear oscillators, Phys. Lett. A 368, 371 (2007).
-
(2007)
Phys. Lett. A
, vol.368
, pp. 371
-
-
Chen, Y.M.1
Liu, J.K.2
-
26
-
-
67449085714
-
-
Y. M. Chen and J. K., Elliptic harmonic balance method for two degree-of-freedom self-excited oscillators, Commun. Nonlin. Sci. Numer. Simul. (2007) in press.
-
Y. M. Chen and J. K., Elliptic harmonic balance method for two degree-of-freedom self-excited oscillators, Commun. Nonlin. Sci. Numer. Simul. (2007) in press.
-
-
-
-
27
-
-
4444377082
-
Determination of limit cycles for strongly nonlinear oscillators
-
J. H. He, Determination of limit cycles for strongly nonlinear oscillators, Phys. Rev. Lett. 90, 174 (2006).
-
(2006)
Phys. Rev. Lett
, vol.90
, pp. 174
-
-
He, J.H.1
-
28
-
-
62949117479
-
-
S. S. Ganji, D. D. Ganji, Z. Z. Ganji and S. Karimpour, Periodic solution for strongly nonlinear vibration Systems by energy balance method, Acta Applicandae \Mathemat-icae, doi: 10.1007/s10440-008-9283-6.
-
S. S. Ganji, D. D. Ganji, Z. Z. Ganji and S. Karimpour, Periodic solution for strongly nonlinear vibration Systems by energy balance method, Acta Applicandae \Mathemat-icae, doi: 10.1007/s10440-008-9283-6.
-
-
-
-
29
-
-
0036526626
-
Preliminary report on the energy balance for nonlinear oscillations
-
J. H. He, Preliminary report on the energy balance for nonlinear oscillations, Mech. Res. Commun. 29, 107 (2002).
-
(2002)
Mech. Res. Commun
, vol.29
, pp. 107
-
-
He, J.H.1
-
30
-
-
34748902823
-
Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method
-
T. Ö zis and A. Yildirim, Determination of the frequency-amplitude relation for a Duffing-harmonic oscillator by the energy balance method, Comput. Math. Appl. 54, 1184 (2007).
-
(2007)
Comput. Math. Appl
, vol.54
, pp. 1184
-
-
zis, T.O.1
Yildirim, A.2
-
31
-
-
35748945723
-
Damped quadratic and mixed-parity oscillator response using Krylov-Bogoliubov method and energy balance
-
R. Porwal and N. S. Vyas, Damped quadratic and mixed-parity oscillator response using Krylov-Bogoliubov method and energy balance, J. Sound Vibr. 309, 877 (2008).
-
(2008)
J. Sound Vibr
, vol.309
, pp. 877
-
-
Porwal, R.1
Vyas, N.S.2
-
32
-
-
0000092673
-
Variational iteration method - a kind of nonlinear analytical technique: Some examples
-
J. H. He, Variational iteration method - a kind of nonlinear analytical technique: some examples, Int. J. Nonlin. Mech. 34, 699 (1999).
-
(1999)
Int. J. Nonlin. Mech
, vol.34
, pp. 699
-
-
He, J.H.1
-
33
-
-
34447517053
-
The variational iteration method for nonlinear oscillators with discontinuities
-
M. Rafei, D. D. Ganji, H. Daniali and H. Pashaei, The variational iteration method for nonlinear oscillators with discontinuities, J. Sound and Vibr. 305, 614 (2007).
-
(2007)
J. Sound and Vibr
, vol.305
, pp. 614
-
-
Rafei, M.1
Ganji, D.D.2
Daniali, H.3
Pashaei, H.4
-
34
-
-
30344475545
-
Construction of solitary solution and compaction-like solution by variational iteration method
-
J. H. He and X. H. Wu, Construction of solitary solution and compaction-like solution by variational iteration method, Chaos, Solitons & Fractals 29, 108 (2006).
-
(2006)
Chaos, Solitons & Fractals
, vol.29
, pp. 108
-
-
He, J.H.1
Wu, X.H.2
-
35
-
-
34250213225
-
Variational approach for nonlinear oscillators
-
J. H. He, Variational approach for nonlinear oscillators, Chaos, Solitons and Fractals 34, 1430 (2007).
-
(2007)
Chaos, Solitons and Fractals
, vol.34
, pp. 1430
-
-
He, J.H.1
-
36
-
-
84989339824
-
Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic- quintic duffing oscillators
-
S. S. Ganji, D. D. Ganji, H. Babazadeh and S. Karimpour, Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic- quintic duffing oscillators, Progress In Electromagnetics Research M 4, 23 (2008).
-
(2008)
Progress In Electromagnetics Research
, vol.M 4
, pp. 23
-
-
Ganji, S.S.1
Ganji, D.D.2
Babazadeh, H.3
Karimpour, S.4
-
37
-
-
39149143060
-
Variational approach to solitons of nonlinear dispersive K(m, n) equations
-
L. Xu, Variational approach to solitons of nonlinear dispersive K(m, n) equations, Chaos, Solitons & Fractals 37, 137 (2008).
-
(2008)
Chaos, Solitons & Fractals
, vol.37
, pp. 137
-
-
Xu, L.1
-
38
-
-
0041621600
-
Variational principles for some nonlinear partial differential equations with variable coefficients
-
J. H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals 19(4), 847 (2004).
-
(2004)
Chaos, Solitons & Fractals
, vol.19
, Issue.4
, pp. 847
-
-
He, J.H.1
-
39
-
-
0035399334
-
-
J. H. He, Iteration perturbation method for strongly nonlinear oscillators, J. Vibr. Contr. 7(5), 631 (2001).
-
J. H. He, Iteration perturbation method for strongly nonlinear oscillators, J. Vibr. Contr. 7(5), 631 (2001).
-
-
-
-
40
-
-
18844391045
-
Limit cycle and bifurcation of nonlinear problems
-
J. H. He, Limit cycle and bifurcation of nonlinear problems, Chaos, Solitons & Fractals 26, 827 (2005).
-
(2005)
Chaos, Solitons & Fractals
, vol.26
, pp. 827
-
-
He, J.H.1
-
41
-
-
34548583484
-
Accurate approximate analytical solutions for nonlinear free vibration of systems with serial linear and nonlinear stiffness
-
S. K. Lai and C. W. Lim, Accurate approximate analytical solutions for nonlinear free vibration of systems with serial linear and nonlinear stiffness, J. Sound Vibr. 307, 720 (2007).
-
(2007)
J. Sound Vibr
, vol.307
, pp. 720
-
-
Lai, S.K.1
Lim, C.W.2
-
42
-
-
43049090433
-
Large amplitude free vibrations of a mass grounded by linear and nonlinear springs in series
-
in press
-
W. P. Sun and B. S. Wu, Large amplitude free vibrations of a mass grounded by linear and nonlinear springs in series, J. Sound Vibr. (2008) in press.
-
(2008)
J. Sound Vibr
-
-
Sun, W.P.1
Wu, B.S.2
-
43
-
-
67449099781
-
-
N. Minorsky, Nonlinear Oscillations, ed. R. E. Krieger (Huntington, New York, 1974).
-
N. Minorsky, Nonlinear Oscillations, ed. R. E. Krieger (Huntington, New York, 1974).
-
-
-
|