메뉴 건너뛰기




Volumn 16, Issue 10, 2003, Pages 1527-1540

Polynomial harmonic GMDH learning networks for time series modeling

Author keywords

Backpropagation training; Neural network; Trigonometric function

Indexed keywords

ALGORITHMS; BACKPROPAGATION; FUNCTIONS; LEARNING SYSTEMS; POLYNOMIALS;

EID: 0242493755     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(03)00188-6     Document Type: Article
Times cited : (59)

References (34)
  • 6
    • 0032637954 scopus 로고    scopus 로고
    • Function approximation - A fast-convergence neural approach based on spectral analysis
    • Citterio C., Pelagotti A., Piuri V., Rocca L. Function approximation - a fast-convergence neural approach based on spectral analysis. IEEE Transactions on Neural Networks. 10:(4):1999;725-740.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.4 , pp. 725-740
    • Citterio, C.1    Pelagotti, A.2    Piuri, V.3    Rocca, L.4
  • 7
    • 0025636775 scopus 로고
    • The Stone-Weierstrass theorem and its application to neural networks
    • Cotter N.E. The Stone-Weierstrass theorem and its application to neural networks. IEEE Transactions on Neural Networks. 1:(4):1990;290-295.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.4 , pp. 290-295
    • Cotter, N.E.1
  • 8
  • 10
    • 0012992026 scopus 로고
    • There exists a neural network that does not make avoidable mistakes
    • H. White. Oxford, UK: Basil Blackwell
    • Gallant A.R., White H. There exists a neural network that does not make avoidable mistakes. White H. Artificial neural networks: Approximation and learning theory. 1992;5-11 Basil Blackwell, Oxford, UK.
    • (1992) Artificial neural networks: Approximation and learning theory , pp. 5-11
    • Gallant, A.R.1    White, H.2
  • 19
    • 0032445796 scopus 로고    scopus 로고
    • On-line identification of nonlinear systems using Volterra polynomial basis function neural networks
    • Liu G.P., Kadirkamanathan V., Billings S.A. On-line identification of nonlinear systems using Volterra polynomial basis function neural networks. Neural Networks. 11:1998;1645-1657.
    • (1998) Neural Networks , vol.11 , pp. 1645-1657
    • Liu, G.P.1    Kadirkamanathan, V.2    Billings, S.A.3
  • 20
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science. 197:1977;287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 22
    • 0346135785 scopus 로고
    • Three conjectures on neural network implementations of Volterra models
    • Marmarelis V.Z. New York, NY: Plenum Press
    • Marmarelis V.Z. Three conjectures on neural network implementations of Volterra models. Marmarelis V.Z. Advanced methods of physiological system modeling. Vol. 3:1994;261-267 Plenum Press, New York, NY.
    • (1994) Advanced methods of physiological system modeling , vol.3 , pp. 261-267
    • Marmarelis, V.Z.1
  • 23
    • 0040112420 scopus 로고
    • On the relation between Volterra models and feedforward artificial neural networks
    • Marmarelis V.Z. New York, NY: Plenum Press
    • Marmarelis V.Z., Zhao X. On the relation between Volterra models and feedforward artificial neural networks. Marmarelis V.Z. Advanced methods of physiological system modeling. Vol. 3:1994;243-259 Plenum Press, New York, NY.
    • (1994) Advanced methods of physiological system modeling , vol.3 , pp. 243-259
    • Marmarelis, V.Z.1    Zhao, X.2
  • 25
    • 0242401012 scopus 로고
    • Networks with learned unit response functions
    • J.E. Moody, S.J. Hanson, Lippmann R.P. Palo Alto, CA: Morgan Kaufmann
    • Moody J., Yarvin N. Networks with learned unit response functions. Moody J.E., Hanson S.J., Lippmann R.P. Advances in neural information processing systems. Vol. 4:1992;1048-1055 Morgan Kaufmann, Palo Alto, CA.
    • (1992) Advances in neural information processing systems , vol.4 , pp. 1048-1055
    • Moody, J.1    Yarvin, N.2
  • 27
    • 0032165267 scopus 로고    scopus 로고
    • Orthogonal and successive projection methods for the learning of neurofuzzy GMDH
    • Ohtani T., Ichihashi H., Miyoshi T., Nagasaka K. Orthogonal and successive projection methods for the learning of neurofuzzy GMDH. Information Sciences. 110:1998;5-24.
    • (1998) Information Sciences , vol.110 , pp. 5-24
    • Ohtani, T.1    Ichihashi, H.2    Miyoshi, T.3    Nagasaka, K.4
  • 30
    • 0003156105 scopus 로고
    • A tree-structured algorithm for reducing computation in networks with separable basis functions
    • Sanger T.D. A tree-structured algorithm for reducing computation in networks with separable basis functions. Neural Computation. 3:(1):1991;67-78.
    • (1991) Neural Computation , vol.3 , Issue.1 , pp. 67-78
    • Sanger, T.D.1
  • 32
    • 0025399568 scopus 로고
    • Self-organizing network for optimum supervised learning
    • Tenorio M.F., Lee W.-T. Self-organizing network for optimum supervised learning. IEEE Transactions on Neural Networks. 1:(1):1990;100-110.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 100-110
    • Tenorio, M.F.1    Lee, W.-T.2
  • 33
    • 0000778985 scopus 로고
    • Predicting sunspots and exchange rates with connectionist networks
    • S. Eubank, & M. Casdagli. Redwood City, CA: Addison-Wesley
    • Weigend A.S., Huberman B.A., Rumelhart D.E. Predicting sunspots and exchange rates with connectionist networks. Eubank S., Casdagli M. Nonlinear modeling and forecasting. 1992;395-432 Addison-Wesley, Redwood City, CA.
    • (1992) Nonlinear modeling and forecasting , pp. 395-432
    • Weigend, A.S.1    Huberman, B.A.2    Rumelhart, D.E.3
  • 34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.