메뉴 건너뛰기




Volumn 17, Issue 1, 2004, Pages 1-13

Rule-based multi-FNN identification with the aid of evolutionary fuzzy granulation

Author keywords

Design methodology; Evolutionary fuzzy granulation; Genetic algorithms; Hard C Means clustering; Information granules; Linear fuzzy inference; Rule based Multi Fuzzy Neural Networks

Indexed keywords

COMPUTER ARCHITECTURE; FUZZY SETS; GENETIC ALGORITHMS; GLOBAL OPTIMIZATION; LOGIC PROGRAMMING; MATHEMATICAL MODELS; NEURAL NETWORKS; TIME SERIES ANALYSIS;

EID: 0344493899     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0950-7051(03)00047-9     Document Type: Article
Times cited : (23)

References (18)
  • 1
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L. Fuzzy sets. Inf. Control. 8:1965;338-353.
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.1
  • 3
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back propagation algorithm
    • Horikawa S., Furuhashi T., Uchigawa Y. On fuzzy modeling using fuzzy neural networks with the back propagation algorithm. IEEE Trans. Neural Networks. 3:(5):1992;801-806.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchigawa, Y.3
  • 4
    • 0011156342 scopus 로고
    • A fuzzy rule structured neural networks
    • (in Japanese)
    • Imasaki N., Kiji J., Endo T. A fuzzy rule structured neural networks. J Jpn Soc. Fuzzy Theory Syst. 4:(5):1992;987-995. (in Japanese).
    • (1992) J Jpn Soc. Fuzzy Theory Syst. , vol.4 , Issue.5 , pp. 987-995
    • Imasaki, N.1    Kiji, J.2    Endo, T.3
  • 5
    • 0000603779 scopus 로고
    • A self-tuning method of fuzzy control by descent methods
    • Nomura H., Wakami. A self-tuning method of fuzzy control by descent methods. Fourth IFSA'91. 1991;155-159.
    • (1991) Fourth IFSA'91 , pp. 155-159
    • Nomura, H.1    Wakami2
  • 7
    • 0000389470 scopus 로고
    • A new effective learning algorithm for a neo fuzzy neuron model
    • Yamakawa T. A new effective learning algorithm for a neo fuzzy neuron model. Fifth IFSA'91. 1993;1017-1020.
    • (1993) Fifth IFSA'91 , pp. 1017-1020
    • Yamakawa, T.1
  • 10
    • 0008089137 scopus 로고    scopus 로고
    • Are Genetic Algorithms Function Optimizers?
    • R. Manner, B. Manderick (Eds.), North-Holland, Amsterdam
    • K.A. De Jong, Are Genetic Algorithms Function Optimizers? R. Manner, B. Manderick (Eds.), Parallel Problem Solving from Nature 2, North-Holland, Amsterdam.
    • Parallel Problem Solving from Nature , vol.2
    • De Jong, K.A.1
  • 11
    • 0042594105 scopus 로고
    • Prediction of Gas Turbine NOx Emissions using Polynomial Neural Network
    • Georgia Institute of Technology, Atlanta
    • G. Vachtsevanos, V. Ramani, T.W. Hwang, Prediction of Gas Turbine NOx Emissions using Polynomial Neural Network, Technical Report, Georgia Institute of Technology, Atlanta, 1995.
    • (1995) Technical Report
    • Vachtsevanos, G.1    Ramani, V.2    Hwang, T.W.3
  • 12
    • 0011092813 scopus 로고
    • Fuzzy modeling
    • (in Japanese)
    • Kang G., Sugeno M. Fuzzy modeling. Trans. SICE. 23:(6):1987;106-108. (in Japanese).
    • (1987) Trans. SICE , vol.23 , Issue.6 , pp. 106-108
    • Kang, G.1    Sugeno, M.2
  • 13
    • 0004233167 scopus 로고
    • Tokyo, Japan: Nikkan Kogyo Shimbun-sha. (in Japanese)
    • Sugeno M. Fuzzy Control. 1988;Nikkan Kogyo Shimbun-sha, Tokyo, Japan. (in Japanese).
    • (1988) Fuzzy Control
    • Sugeno, M.1
  • 14
    • 0001502048 scopus 로고
    • Revised GMDH algorithm estimating degree of the complete polynomial
    • Kondo T. Revised GMDH algorithm estimating degree of the complete polynomial. Trans. Soc. Instrum. Control Eng. 22:(9):1986;928-934.
    • (1986) Trans. Soc. Instrum. Control Eng. , vol.22 , Issue.9 , pp. 928-934
    • Kondo, T.1
  • 15
    • 0034300570 scopus 로고    scopus 로고
    • Identification of fuzzy systems by means of an auto-tuning algorithm and its application to non-linear systems
    • Oh S.-K., Pedrycz W. Identification of fuzzy systems by means of an auto-tuning algorithm and its application to non-linear systems. Fuzzy Sets Syst. 115:(2):2000;205-230.
    • (2000) Fuzzy Sets Syst. , vol.115 , Issue.2 , pp. 205-230
    • Oh, S.-K.1    Pedrycz, W.2
  • 16
    • 0035467258 scopus 로고    scopus 로고
    • Identification of fuzzy models with the aid of evolutionary data granulation
    • Park B.-J., Pedrycz W., Oh S.-K. Identification of fuzzy models with the aid of evolutionary data granulation. IEE Proc.-CTA. 148:(5):2001;406-418.
    • (2001) IEE Proc.-CTA , vol.148 , Issue.5 , pp. 406-418
    • Park, B.-J.1    Pedrycz, W.2    Oh, S.-K.3
  • 18
    • 0000181608 scopus 로고    scopus 로고
    • The design of optimal fuzzy-neural networks structure by means of GA and an aggregate weighted performance index
    • Oh S.-K., Yoon K.C., Kim H.K. The design of optimal fuzzy-neural networks structure by means of GA and an aggregate weighted performance index. Inst. Control, Autom. Syst. Eng. (ICASE). 6:(3):2000;273-283.
    • (2000) Inst. Control, Autom. Syst. Eng. (ICASE) , vol.6 , Issue.3 , pp. 273-283
    • Oh, S.-K.1    Yoon, K.C.2    Kim, H.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.