메뉴 건너뛰기




Volumn 180, Issue 7, 2009, Pages 1063-1071

Multisymplectic numerical method for the Zakharov system

Author keywords

Fourier pseudospectral method; Multisymplectic; Solitary wave; The Zakharov system

Indexed keywords

COLLISION BEHAVIOR; CONSERVATION LAW; DISCRETIZATION; EXPONENTIAL CONVERGENCE RATE; FOURIER PSEUDOSPECTRAL METHOD; MULTISYMPLECTIC; NUMERICAL CALCULATION; NUMERICAL RESULTS; OTHER DISCRETE; PLASMA PHYSICS; PSEUDOSPECTRAL; SOLITARY WAVE; THE ZAKHAROV SYSTEM; ZAKHAROV SYSTEM;

EID: 67249134398     PISSN: 00104655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cpc.2008.12.028     Document Type: Article
Times cited : (25)

References (25)
  • 1
    • 0001596227 scopus 로고
    • Collapse of Langmuir wave
    • Zakharov V.E. Collapse of Langmuir wave. Sov. Phys. JETP 35 (1977) 908-914
    • (1977) Sov. Phys. JETP , vol.35 , pp. 908-914
    • Zakharov, V.E.1
  • 3
    • 0041897398 scopus 로고    scopus 로고
    • Well-posedness for Zakharov systems with generalized nonlinearity
    • Colliander J. Well-posedness for Zakharov systems with generalized nonlinearity. J. Differential Equations 148 (1998) 351-363
    • (1998) J. Differential Equations , vol.148 , pp. 351-363
    • Colliander, J.1
  • 4
    • 4243371322 scopus 로고
    • Dynamics of a soliton in a generalized Zakharov system with dissipation
    • Hadouaj H., Malomed B.A., and Maugin G.A. Dynamics of a soliton in a generalized Zakharov system with dissipation. Phys. Rev. A 44 (1991) 3925-3931
    • (1991) Phys. Rev. A , vol.44 , pp. 3925-3931
    • Hadouaj, H.1    Malomed, B.A.2    Maugin, G.A.3
  • 5
    • 0042399515 scopus 로고
    • Soliton-soliton collisions in a generalized Zakharov system
    • Hadouaj H., Malomed B.A., and Maugin G.A. Soliton-soliton collisions in a generalized Zakharov system. Phys. Rev. A 44 (1991) 3932-3940
    • (1991) Phys. Rev. A , vol.44 , pp. 3932-3940
    • Hadouaj, H.1    Malomed, B.A.2    Maugin, G.A.3
  • 7
    • 13844262830 scopus 로고    scopus 로고
    • Numerical simulation of a generalized Zakharov system
    • Shi J., Markowich P.A., and Zheng C.X. Numerical simulation of a generalized Zakharov system. J. Comput. Phys. 201 (2004) 376-395
    • (2004) J. Comput. Phys. , vol.201 , pp. 376-395
    • Shi, J.1    Markowich, P.A.2    Zheng, C.X.3
  • 8
    • 0041355423 scopus 로고    scopus 로고
    • Numerical methods for the generalized Zakharov system
    • Bao W., Sun F.F., and Wei G.W. Numerical methods for the generalized Zakharov system. J. Comput. Phys. 190 (2003) 201-228
    • (2003) J. Comput. Phys. , vol.190 , pp. 201-228
    • Bao, W.1    Sun, F.F.2    Wei, G.W.3
  • 9
    • 0041897399 scopus 로고
    • A conservative difference scheme for the Zakharov equations
    • Chang Q., and Jiang H. A conservative difference scheme for the Zakharov equations. J. Comput. Phys. 113 (1994) 309-319
    • (1994) J. Comput. Phys. , vol.113 , pp. 309-319
    • Chang, Q.1    Jiang, H.2
  • 10
    • 84968490649 scopus 로고
    • Finite difference method for generalized Zakharov equations
    • Chang Q., and Jiang H. Finite difference method for generalized Zakharov equations. Math. Comput. 64 (1995) 537-553
    • (1995) Math. Comput. , vol.64 , pp. 537-553
    • Chang, Q.1    Jiang, H.2
  • 11
    • 84968513694 scopus 로고
    • Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension
    • Glassey R. Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comput. 58 (1992) 83-102
    • (1992) Math. Comput. , vol.58 , pp. 83-102
    • Glassey, R.1
  • 13
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
    • Bridges T.J., and Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284 (2001) 184-193
    • (2001) Phys. Lett. A , vol.284 , pp. 184-193
    • Bridges, T.J.1    Reich, S.2
  • 14
    • 0039152065 scopus 로고    scopus 로고
    • Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations
    • Bridges T.J., and Reich S. Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations. Physica D 152 (2001) 491-504
    • (2001) Physica D , vol.152 , pp. 491-504
    • Bridges, T.J.1    Reich, S.2
  • 15
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation
    • Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation. J. Comput. Phys. 157 (2000) 473-499
    • (2000) J. Comput. Phys. , vol.157 , pp. 473-499
    • Reich, S.1
  • 16
    • 0037400145 scopus 로고    scopus 로고
    • Multisymplectic integration methods for Hamiltonian PDEs
    • Moore B., and Reich S. Multisymplectic integration methods for Hamiltonian PDEs. Future Gener. Comput. Syst. 19 (2003) 395-402
    • (2003) Future Gener. Comput. Syst. , vol.19 , pp. 395-402
    • Moore, B.1    Reich, S.2
  • 17
    • 0005727359 scopus 로고    scopus 로고
    • Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation
    • Chen J.B., and Qin M.Z. Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Electron. Trans. Numer. Anal. 12 (2001) 193-204
    • (2001) Electron. Trans. Numer. Anal. , vol.12 , pp. 193-204
    • Chen, J.B.1    Qin, M.Z.2
  • 18
    • 33644672738 scopus 로고    scopus 로고
    • Symplectic and multisymplectic Fourier pseudospectral discretizations for the Klein-Gordon equation
    • Chen J.B. Symplectic and multisymplectic Fourier pseudospectral discretizations for the Klein-Gordon equation. Lett. Math. Phys. 75 (2006) 293-305
    • (2006) Lett. Math. Phys. , vol.75 , pp. 293-305
    • Chen, J.B.1
  • 19
    • 0035841060 scopus 로고    scopus 로고
    • Geometric integrators for the nonlinear Schrödinger equation
    • Islas A.L., Karpeev D.A., and Schober C.M. Geometric integrators for the nonlinear Schrödinger equation. J. Comput. Phys. 173 (2001) 116-148
    • (2001) J. Comput. Phys. , vol.173 , pp. 116-148
    • Islas, A.L.1    Karpeev, D.A.2    Schober, C.M.3
  • 20
    • 0037400187 scopus 로고    scopus 로고
    • Multi-symplectic methods for generalized Schrödinger equations
    • Islas A.L., and Schober C.M. Multi-symplectic methods for generalized Schrödinger equations. Future Gener. Comput. Syst. 19 (2003) 403-413
    • (2003) Future Gener. Comput. Syst. , vol.19 , pp. 403-413
    • Islas, A.L.1    Schober, C.M.2
  • 21
    • 3242702916 scopus 로고    scopus 로고
    • On the preservation of phase space structure under multi-symplectic discretization
    • Islas A.L., and Schober C.M. On the preservation of phase space structure under multi-symplectic discretization. J. Comput. Phys. 197 (2004) 585-609
    • (2004) J. Comput. Phys. , vol.197 , pp. 585-609
    • Islas, A.L.1    Schober, C.M.2
  • 22
    • 33847350145 scopus 로고    scopus 로고
    • Multisymplectic Fourier pseudospectral method for the nonlinear Schrödinger equations with wave operator
    • Wang J. Multisymplectic Fourier pseudospectral method for the nonlinear Schrödinger equations with wave operator. J. Comput. Math. 25 (2007) 31-48
    • (2007) J. Comput. Math. , vol.25 , pp. 31-48
    • Wang, J.1
  • 23
    • 34547824330 scopus 로고    scopus 로고
    • A note on multisymplectic Fourier pseudospectral method for the nonlinear Schrödinger equation
    • Wang J. A note on multisymplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Appl. Math. Comput. 191 (2007) 31-41
    • (2007) Appl. Math. Comput. , vol.191 , pp. 31-41
    • Wang, J.1
  • 24
    • 56349144791 scopus 로고    scopus 로고
    • Multisymplectic integrator of the Zakharov system
    • Wang J. Multisymplectic integrator of the Zakharov system. Chin. Phys. Lett. 25 (2008) 3531-3534
    • (2008) Chin. Phys. Lett. , vol.25 , pp. 3531-3534
    • Wang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.