-
1
-
-
85037221191
-
Tumbling of vesicles under shear flow with an advected field approach
-
doi:10.1103/PhysRevE.67.031908
-
Biben, T. and Misbah, C. 2003 Tumbling of vesicles under shear flow with an advected field approach. Phys. Rev. E 67, 031908. (doi:10.1103/PhysRevE.67.031908)
-
(2003)
Phys. Rev. E
, vol.67
, pp. 031908
-
-
Biben, T.1
Misbah, C.2
-
2
-
-
33244464096
-
Phase-field approach to three-dimensional vesicle dynamics
-
doi:10.1103/PhysRevE.72.041921
-
Biben, T., Kassner, K. and Misbah, C. 2005 Phase-field approach to three-dimensional vesicle dynamics. Phys. Rev. E 72, 049121. (doi:10.1103/PhysRevE.72.041921)
-
(2005)
Phys. Rev. E
, vol.72
, pp. 049121
-
-
Biben, T.1
Kassner, K.2
Misbah, C.3
-
3
-
-
34447266194
-
A level set approach to anisotropic flows with curvature regularization
-
doi:10.1016/j.jcp. 2006.11.026
-
Burger, M., Hausser, F., Stöcker, C. and Voigt, A. 2007 A level set approach to anisotropic flows with curvature regularization. J. Comput. Phys. 225, 183-205. (doi:10.1016/j.jcp. 2006.11.026)
-
(2007)
J. Comput. Phys
, vol.225
, pp. 183-205
-
-
Burger, M.1
Hausser, F.2
Stöcker, C.3
Voigt, A.4
-
4
-
-
33746012315
-
Free energy of a non-uniform system: Interfacial free energy
-
doi:10.1063/1.1744102
-
Cahn, J. W. and Hilliard, J. 1958 Free energy of a non-uniform system: interfacial free energy. J. Chem. Phys. 28, 258-267. (doi:10.1063/1.1744102)
-
(1958)
J. Chem. Phys
, vol.28
, pp. 258-267
-
-
Cahn, J.W.1
Hilliard, J.2
-
5
-
-
0016118199
-
A vector thermodynamics for anisotropic surfaces-II. Curved and faceted surfaces
-
doi:10.1016/0001-6160 (74) 90134-5
-
Cahn, J. W. and Hoffman, D. W. 1974 A vector thermodynamics for anisotropic surfaces-II. Curved and faceted surfaces. Acta Met al.l. 22, 1205-1214. (doi:10.1016/0001-6160 (74) 90134-5)
-
(1974)
Acta Met al.l
, vol.22
, pp. 1205-1214
-
-
Cahn, J.W.1
Hoffman, D.W.2
-
6
-
-
0030488511
-
The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature
-
doi:10.1017/S0956792500002369
-
Cahn, J. W., Elliott, C. M. and Novick-Cohen, A. 1996 The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287-302. (doi:10.1017/S0956792500002369)
-
(1996)
Eur. J. Appl. Math
, vol.7
, pp. 287-302
-
-
Cahn, J.W.1
Elliott, C.M.2
Novick-Cohen, A.3
-
7
-
-
85020824810
-
-
De Giorgi, E. 1991 Some remarks on gamma-convergence and least squares methods. In Composite media and homogeneization theory, 5 (eds G. Dal Maso and G. F. Dell'Antonio). Progress in nonlinear differential equations and their applications, pp. 135-142. Boston, MA: Birkhauser.
-
De Giorgi, E. 1991 Some remarks on gamma-convergence and least squares methods. In Composite media and homogeneization theory, vol. 5 (eds G. Dal Maso and G. F. Dell'Antonio). Progress in nonlinear differential equations and their applications, pp. 135-142. Boston, MA: Birkhauser.
-
-
-
-
8
-
-
0026909961
-
A regularized equation for anisotropic motionby-curvature
-
doi:10.1137/0152065
-
DiCarlo, A., Gurtin, M. and Podio-Guidugli, P. 1992 A regularized equation for anisotropic motionby-curvature. SIAM J. Appl. Math. 52, 1111-1119. (doi:10.1137/0152065)
-
(1992)
SIAM J. Appl. Math
, vol.52
, pp. 1111-1119
-
-
DiCarlo, A.1
Gurtin, M.2
Podio-Guidugli, P.3
-
9
-
-
3242875567
-
A phase field approach in the numerical study of the elastic bending energy for vesicle membranes
-
doi:10.1016/j.jcp, 01.029
-
Du, Q., Liu, C. and Wang, X. 2004 A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450-468. (doi:10.1016/j.jcp. 2004. 01.029)
-
(2004)
J. Comput. Phys
, vol.198
, pp. 450-468
-
-
Du, Q.1
Liu, C.2
Wang, X.3
-
10
-
-
29144514194
-
A phase field formulation of the Willmore problem
-
doi:10.1088/0951-7715/18/3/016
-
Du, Q., Liu, C., Ryhman, R. and Wang, X. 2005 A phase field formulation of the Willmore problem. Nonlinearity 18, 1249-1267. (doi:10.1088/0951-7715/18/3/016)
-
(2005)
Nonlinearity
, vol.18
, pp. 1249-1267
-
-
Du, Q.1
Liu, C.2
Ryhman, R.3
Wang, X.4
-
11
-
-
79956032946
-
Ordered growth of nanocrystals via a morphological instability
-
doi:10.1063/1.1429757
-
Eggleston, J. J. and Voorhees, P. W. 2002 Ordered growth of nanocrystals via a morphological instability. Appl. Phys. Lett. 80, 306-308. (doi:10.1063/1.1429757)
-
(2002)
Appl. Phys. Lett
, vol.80
, pp. 306-308
-
-
Eggleston, J.J.1
Voorhees, P.W.2
-
12
-
-
0035276946
-
A phase-field model for highly anisotropic interfacial energy
-
doi:10.1016/S0167-2789 (00) 00222-0
-
Eggleston, J. J., McFadden, G. and Voorhees, P. W. 2001 A phase-field model for highly anisotropic interfacial energy. Physica D 150, 91-103. (doi:10.1016/S0167-2789 (00) 00222-0)
-
(2001)
Physica D
, vol.150
, pp. 91-103
-
-
Eggleston, J.J.1
McFadden, G.2
Voorhees, P.W.3
-
13
-
-
33644942921
-
A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy
-
doi:10.1016/S0065-2156 (04) 40001-5
-
Fried, E. and Gurtin, M. E. 2004 A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy. Adv. Appl. Mech. 40, 1-177. (doi:10.1016/S0065-2156 (04) 40001-5)
-
(2004)
Adv. Appl. Mech
, vol.40
, pp. 1-177
-
-
Fried, E.1
Gurtin, M.E.2
-
14
-
-
48349087162
-
Comparison of phase-field models for surface diffusion
-
doi:10.1103/PhysRevE.78.016703
-
Gugenberger, C., Spatschek, R. and Kassner, K. 2008 Comparison of phase-field models for surface diffusion. Phys. Rev. E 78, 016703. (doi:10.1103/PhysRevE.78.016703)
-
(2008)
Phys. Rev. E
, vol.78
, pp. 016703
-
-
Gugenberger, C.1
Spatschek, R.2
Kassner, K.3
-
15
-
-
0036627609
-
Interface evolution in three dimensions with curvaturedependent energy and surface diffusion: Interface-controlled evolution, phase transitions, epitaxial growth of elastic films
-
doi:10.1007 /s002050200193
-
Gurtin, M. E. and Jabbour, M. 2002 Interface evolution in three dimensions with curvaturedependent energy and surface diffusion: interface-controlled evolution, phase transitions, epitaxial growth of elastic films. Arch. Ration. Mech. Anal. 163, 171-208. (doi:10.1007 /s002050200193)
-
(2002)
Arch. Ration. Mech. Anal
, vol.163
, pp. 171-208
-
-
Gurtin, M.E.1
Jabbour, M.2
-
16
-
-
30644462241
-
A discrete scheme for regularized anisotropic surface diffusion: A 6th order geometric evolution equation
-
Hausser, F. and Voigt, A. 2005a A discrete scheme for regularized anisotropic surface diffusion: a 6th order geometric evolution equation. Interfaces Free Bound. 7, 353-369.
-
(2005)
Interfaces Free Bound
, vol.7
, pp. 353-369
-
-
Hausser, F.1
Voigt, A.2
-
17
-
-
15844381930
-
Facet formation and coarsening modeled by a geometric evolution law for epitaxial growth
-
doi:10.1016/j.jcrysgro.2004.10.137
-
Hausser, F. and Voigt, A. 2005b Facet formation and coarsening modeled by a geometric evolution law for epitaxial growth. J. Cryst. Growth 275, e47-e51. (doi:10.1016/j.jcrysgro.2004.10.137)
-
(2005)
J. Cryst. Growth
, vol.275
-
-
Hausser, F.1
Voigt, A.2
-
18
-
-
36149008975
-
Some theorems on the free energies of crystal surfaces
-
doi:10.1103/PhysRev. 82.87
-
Herring, C. 1951 Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87-93. (doi:10.1103/PhysRev. 82.87)
-
(1951)
Phys. Rev
, vol.82
, pp. 87-93
-
-
Herring, C.1
-
19
-
-
0008283862
-
Removing the stiffness from interfacial flows with surface tension
-
doi:10.1006/jcph.1994.1170
-
Hou, T. Y., Lowengrub, J. S. and Shelley, M. J. 1994 Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114, 312-338. (doi:10.1006/jcph.1994.1170)
-
(1994)
J. Comput. Phys
, vol.114
, pp. 312-338
-
-
Hou, T.Y.1
Lowengrub, J.S.2
Shelley, M.J.3
-
20
-
-
51349114290
-
owardathermodynamicallyconsistent pictureofthe phase-fieldmodel of vesicles: Curvature energy
-
doi:10.1103/PhysRevE.78.031902
-
Jamet, D. & Misbah, C.2008Towardathermodynamicallyconsistent pictureofthe phase-fieldmodel of vesicles: curvature energy. Phys. Rev. E 78, 031902. (doi:10.1103/PhysRevE.78.031902)
-
(2008)
Phys. Rev. E
, vol.78
, pp. 031902
-
-
Jamet, D.1
Misbah, C.2
-
21
-
-
34249817369
-
Modeling and numerical simulations of dendritic crystal growth
-
doi:10.1016/0167-2789 (93) 90120-P
-
Kobayashi, R. 1993 Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410-423. (doi:10.1016/0167-2789 (93) 90120-P)
-
(1993)
Physica D
, vol.63
, pp. 410-423
-
-
Kobayashi, R.1
-
22
-
-
0032010562
-
A diffuse interface model for microstructural evolution in elastically stressed solids
-
doi:10.1016/S1359-6454 (97) 00377-7
-
Leo, P. H., Lowengrub, J. S. and Jou, H. J. 1998 A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Met al.l. 46, 2113-2130. (doi:10.1016/S1359-6454 (97) 00377-7)
-
(1998)
Acta Met al.l
, vol.46
, pp. 2113-2130
-
-
Leo, P.H.1
Lowengrub, J.S.2
Jou, H.J.3
-
23
-
-
0002999776
-
Microstructural evolution in orthotropic elastic media
-
doi:10.1006/jcph.1999.6359
-
Leo, P. H., Lowengrub, J. S. and Nie, Q. 2000 Microstructural evolution in orthotropic elastic media. J. Comput. Phys. 157, 44-88. (doi:10.1006/jcph.1999.6359)
-
(2000)
J. Comput. Phys
, vol.157
, pp. 44-88
-
-
Leo, P.H.1
Lowengrub, J.S.2
Nie, Q.3
-
24
-
-
23144458829
-
Nonlinear morphological control of growing crystals
-
doi:10.1016/j.physd.2005.06.021
-
Li, S., Lowengrub, J. S. and Leo, P. H. 2005 Nonlinear morphological control of growing crystals. Physica D 208, 209-219. (doi:10.1016/j.physd.2005.06.021)
-
(2005)
Physica D
, vol.208
, pp. 209-219
-
-
Li, S.1
Lowengrub, J.S.2
Leo, P.H.3
-
25
-
-
0000173136
-
Dynamics of phase separation of crystal surfaces
-
doi:10.1103/PhysRevB.48. 5808
-
Liu, F. and Metiu, H. 1993 Dynamics of phase separation of crystal surfaces. Phys. Rev. B 48, 5808-5817. (doi:10.1103/PhysRevB.48. 5808)
-
(1993)
Phys. Rev. B
, vol.48
, pp. 5808-5817
-
-
Liu, F.1
Metiu, H.2
-
26
-
-
0034420272
-
Propagation of fronts in a nonlinear fourth order equation
-
doi:10.1017/S0956792599004131
-
Loreti, P. and March, R. 2000 Propagation of fronts in a nonlinear fourth order equation. Eur. J. Appl. Math. 11, 203-213. (doi:10.1017/S0956792599004131)
-
(2000)
Eur. J. Appl. Math
, vol.11
, pp. 203-213
-
-
Loreti, P.1
March, R.2
-
27
-
-
33749855208
-
Phasefield models for anisotropic interfaces
-
doi:10.1103/PhysRevE. 48.2016
-
McFadden, G. B., Wheeler, A. A., Braun, R. J., Coriell, S. R. and Sekerka, R. F. 1993 Phasefield models for anisotropic interfaces. J. Phys. Rev. E 48, 2016-2024. (doi:10.1103/PhysRevE. 48.2016)
-
(1993)
J. Phys. Rev. E
, vol.48
, pp. 2016-2024
-
-
McFadden, G.B.1
Wheeler, A.A.2
Braun, R.J.3
Coriell, S.R.4
Sekerka, R.F.5
-
28
-
-
0001410452
-
Front migration in the nonlinear Cahn-Hilliard equation
-
doi:10.1098/rspa.1989.0027
-
Pego, R. 1989 Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. A 422, 261-278. (doi:10.1098/rspa.1989.0027)
-
(1989)
Proc. R. Soc. A
, vol.422
, pp. 261-278
-
-
Pego, R.1
-
29
-
-
33845774009
-
Higher order regularization of anisotropic geometric evolution equations in three dimensions
-
Rätz, A. and Voigt, A. 2006 Higher order regularization of anisotropic geometric evolution equations in three dimensions. J. Comput. Theor. Nanosci. 3, 560-564.
-
(2006)
J. Comput. Theor. Nanosci
, vol.3
, pp. 560-564
-
-
Rätz, A.1
Voigt, A.2
-
30
-
-
33644508961
-
Surface evolution of elastically stressed films under deposition by a diffuse interface model
-
doi:10.1016/j.jcp, 09.013
-
Rätz, A., Ribalta, A. and Voigt, A. 2006 Surface evolution of elastically stressed films under deposition by a diffuse interface model. J. Comput. Phys. 214, 187-208. (doi:10.1016/j.jcp. 2005. 09.013)
-
(2005)
J. Comput. Phys
, vol.214
, pp. 187-208
-
-
Rätz, A.1
Ribalta, A.2
Voigt, A.3
-
31
-
-
33749607402
-
On a modified conjecture of DeGiorgi
-
doi:10.1007/s00209-006-0002-6
-
Röger, M. and Schätzle, R. 2006 On a modified conjecture of DeGiorgi. Mathematische Zeitschrift 254, 675-714. (doi:10.1007/s00209-006-0002-6)
-
(2006)
Mathematische Zeitschrift
, vol.254
, pp. 675-714
-
-
Röger, M.1
Schätzle, R.2
-
32
-
-
0037718609
-
Faceting of a growing crystal surface by surface diffusion
-
doi:10. 1103/PhysRevE.67.021606
-
Savina, T. V., Golovin, A. A., Davis, S. H., Nepomnyashchy, A. A. and Voorhees, P. W. 2003 Faceting of a growing crystal surface by surface diffusion. Phys. Rev. E 67, 021606. (doi:10. 1103/PhysRevE.67.021606)
-
(2003)
Phys. Rev. E
, vol.67
, pp. 021606
-
-
Savina, T.V.1
Golovin, A.A.2
Davis, S.H.3
Nepomnyashchy, A.A.4
Voorhees, P.W.5
-
33
-
-
15844383470
-
Analytical criteria for missing orientations on three-dimensional equilibrium shapes
-
doi:10.1016/j.jcrysgro.2004.10.069
-
Sekerka, R. F. 2005 Analytical criteria for missing orientations on three-dimensional equilibrium shapes. J. Cryst. Growth 275, 77-82. (doi:10.1016/j.jcrysgro.2004.10.069)
-
(2005)
J. Cryst. Growth
, vol.275
, pp. 77-82
-
-
Sekerka, R.F.1
-
34
-
-
1642633219
-
Evolution of material voids for highly anisotropic surface energy
-
doi:10.1016/j.jmps.2003.11.003
-
Siegel, M., Miksis, M. J. and Voorhees, P. W. 2004 Evolution of material voids for highly anisotropic surface energy. J. Mech. Phys. Solids 52, 1319-1353. (doi:10.1016/j.jmps.2003.11.003)
-
(2004)
J. Mech. Phys. Solids
, vol.52
, pp. 1319-1353
-
-
Siegel, M.1
Miksis, M.J.2
Voorhees, P.W.3
-
35
-
-
1842427246
-
Asymptotic solutions for the equilibrium crystal shape with small corner energy regularization
-
doi:10.1103/PhysRevE.69.011603
-
Spencer, B. 2004 Asymptotic solutions for the equilibrium crystal shape with small corner energy regularization. Phys. Rev. E 69, 011603. (doi:10.1103/PhysRevE.69.011603)
-
(2004)
Phys. Rev. E
, vol.69
, pp. 011603
-
-
Spencer, B.1
-
36
-
-
0000755219
-
Spinodal decomposition of a crystal surface
-
doi:10.1103/PhysRevA.46. 6505
-
Stewart, J. and Goldenfeld, N. 1992 Spinodal decomposition of a crystal surface. Phys. Rev. A 46, 6505-6512. (doi:10.1103/PhysRevA.46. 6505)
-
(1992)
Phys. Rev. A
, vol.46
, pp. 6505-6512
-
-
Stewart, J.1
Goldenfeld, N.2
-
37
-
-
52649175908
-
Asymptotic analysis of phase field formulations of bending elasticity models
-
doi:10.1137/060663519
-
Wang, X. 2007 Asymptotic analysis of phase field formulations of bending elasticity models. SIAM J. Math. Anal. 39, 1367-1401. (doi:10.1137/060663519)
-
(2007)
SIAM J. Math. Anal
, vol.39
, pp. 1367-1401
-
-
Wang, X.1
-
38
-
-
33750547125
-
Phase-field theory of edges in an anisotropic crystal
-
doi:10.1098/rspa.2006. 1721
-
Wheeler, A. A. 2006 Phase-field theory of edges in an anisotropic crystal. Proc. R. Soc. A 462, 3363-3384. (doi:10.1098/rspa.2006. 1721)
-
(2006)
Proc. R. Soc. A
, vol.462
, pp. 3363-3384
-
-
Wheeler, A.A.1
-
39
-
-
33746681345
-
Phase-field model for solidification of a eutectic alloy
-
doi:10.1098/rspa.1996.0026
-
Wheeler, A. A., McFadden, G. B. and Boettinger, W. J. 1996 Phase-field model for solidification of a eutectic alloy. Proc. R. Soc. A 452, 495-525. (doi:10.1098/rspa.1996.0026)
-
(1996)
Proc. R. Soc. A
, vol.452
, pp. 495-525
-
-
Wheeler, A.A.1
McFadden, G.B.2
Boettinger, W.J.3
-
40
-
-
28344443671
-
Quantum dot formation on a strain-patterned epitaxial thin film
-
doi:10.1063/1.2061852
-
Wise, S. M., Lowengrub, J. S., Kim, J., Thornton, K., Voorhees, P. W. and Johnson, W. 2005 Quantum dot formation on a strain-patterned epitaxial thin film. Appl. Phys. Lett. 87, 133102. (doi:10.1063/1.2061852)
-
(2005)
Appl. Phys. Lett
, vol.87
, pp. 133102
-
-
Wise, S.M.1
Lowengrub, J.S.2
Kim, J.3
Thornton, K.4
Voorhees, P.W.5
Johnson, W.6
-
41
-
-
34548460677
-
Solving the regularized, strongly anisotropic Cahn- Hilliard equation by an adaptive non-linear multigrid method
-
doi:10.1016/j.jcp. 2007.04.020
-
Wise, S. M., Kim, J. and Lowengrub, J. S. 2007 Solving the regularized, strongly anisotropic Cahn- Hilliard equation by an adaptive non-linear multigrid method. J. Comp. Phys. 226, 414-446. (doi:10.1016/j.jcp. 2007.04.020)
-
(2007)
J. Comp. Phys
, vol.226
, pp. 414-446
-
-
Wise, S.M.1
Kim, J.2
Lowengrub, J.S.3
-
42
-
-
85020826691
-
-
In preparation
-
Zhou, P., Torabi, S., Lowengrub, J. S., Voigt, A. and Wise, S. M. In preparation. Modeling the evolution of strongly anisotropic, misfitting thin films.
-
Modeling the evolution of strongly anisotropic, misfitting thin films
-
-
Zhou, P.1
Torabi, S.2
Lowengrub, J.S.3
Voigt, A.4
Wise, S.M.5
|