-
1
-
-
33244464096
-
-
T. BIBEN, K. KASSNER, AND C. MISBAH, Phase-field approach to 3D vesicle dynamics, Phys. Rev. E., 72 (2005), article 041921.
-
T. BIBEN, K. KASSNER, AND C. MISBAH, Phase-field approach to 3D vesicle dynamics, Phys. Rev. E., 72 (2005), article 041921.
-
-
-
-
2
-
-
0034173042
-
Method for efficient shape parameterization of fluid membranes and vesicles
-
M. BLOOR AND M. WILSON, Method for efficient shape parameterization of fluid membranes and vesicles, Phys. Rev. E, 61 (2000), pp. 4218-4229.
-
(2000)
Phys. Rev. E
, vol.61
, pp. 4218-4229
-
-
BLOOR, M.1
WILSON, M.2
-
3
-
-
0030584607
-
A level set formulation of Eulerian interface capturing methods for incompressible fluid flows
-
Y. C. CHANG, T. Y. HOU, B. MERRIMAN, AND S. OSHER, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124 (1996), pp. 449-464.
-
(1996)
J. Comput. Phys
, vol.124
, pp. 449-464
-
-
CHANG, Y.C.1
HOU, T.Y.2
MERRIMAN, B.3
OSHER, S.4
-
4
-
-
0000937660
-
Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory
-
H. DÖBEREINER. E. EVANS, M. KRAUS, U. SEIFERT, AND M. WORTIS, Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory, Phys. Rev. E, 55 (1997), pp. 4458-4474.
-
(1997)
Phys. Rev. E
, vol.55
, pp. 4458-4474
-
-
DÖBEREINER, H.1
EVANS, E.2
KRAUS, M.3
SEIFERT, U.4
WORTIS, M.5
-
5
-
-
36749007718
-
Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations
-
Q. DU AND X. WANG, Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations, Internat. J. Numer. Anal. Modeling, 4 (2007), pp. 441-459.
-
(2007)
Internat. J. Numer. Anal. Modeling
, vol.4
, pp. 441-459
-
-
DU, Q.1
WANG, X.2
-
6
-
-
85140869946
-
Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations
-
to appear
-
Q. DU AND J. ZHANG, Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations, SIAM J. Sci. Comput., to appear.
-
SIAM J. Sci. Comput
-
-
DU, Q.1
ZHANG, J.2
-
7
-
-
3242875567
-
A phase field approach in the numerical study of the elastic bending energy for vesicle membranes
-
Q. DU, C. LIU, AND X. WANG, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comput. Phys., 198 (2004), pp. 450-468.
-
(2004)
J. Comput. Phys
, vol.198
, pp. 450-468
-
-
DU, Q.1
LIU, C.2
WANG, X.3
-
8
-
-
29144520935
-
Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions
-
Q. DU, C. LIU, AND X. WANG, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., 212 (2005), pp. 757-777.
-
(2005)
J. Comput. Phys
, vol.212
, pp. 757-777
-
-
DU, Q.1
LIU, C.2
WANG, X.3
-
9
-
-
29144511275
-
Retrieving topological information for phase field models
-
Q. DU, C. LIU, AND X. WANG, Retrieving topological information for phase field models, SIAM J. Appl. Math., 65 (2005), pp. 1913-1932.
-
(2005)
SIAM J. Appl. Math
, vol.65
, pp. 1913-1932
-
-
DU, Q.1
LIU, C.2
WANG, X.3
-
10
-
-
29144514194
-
A phase field formulation of the Willmore problem
-
Q. DU, C. LIU, R. RYHAM, AND X. WANG, A phase field formulation of the Willmore problem, Nonlinearity, 18 (2005), pp. 1249-1267.
-
(2005)
Nonlinearity
, vol.18
, pp. 1249-1267
-
-
DU, Q.1
LIU, C.2
RYHAM, R.3
WANG, X.4
-
11
-
-
29144441852
-
Phase field modeling of the spontaneous curvature effect in cell membranes
-
Q. DU, C. LIU, R. RYHAM, AND X. WANG, Phase field modeling of the spontaneous curvature effect in cell membranes, Commun. Pure Appl. Anal., 4 (2005), pp. 537-548.
-
(2005)
Commun. Pure Appl. Anal
, vol.4
, pp. 537-548
-
-
DU, Q.1
LIU, C.2
RYHAM, R.3
WANG, X.4
-
12
-
-
52649155828
-
Modeling vesicle deformations in flow fields via energetic variational approaches
-
submitted
-
Q. DU, C. LIU, R. RYHAM, AND X. WANG, Modeling vesicle deformations in flow fields via energetic variational approaches, Nonlinearity, submitted.
-
Nonlinearity
-
-
DU, Q.1
LIU, C.2
RYHAM, R.3
WANG, X.4
-
13
-
-
34248379040
-
Diffuse interface energies capturing the Euler number: Relaxation and renomalization
-
Q. DU, C. LIU, R. RYHAM, AND X. WANG, Diffuse interface energies capturing the Euler number: Relaxation and renomalization, Commun. Math. Sci., 5 (2007), pp. 233-242.
-
(2007)
Commun. Math. Sci
, vol.5
, pp. 233-242
-
-
DU, Q.1
LIU, C.2
RYHAM, R.3
WANG, X.4
-
14
-
-
0019392895
-
A numerical method for two phase flow with unstable interface
-
J. GLIMM, D. MARCHESIN, AND O. MCBRYAN, A numerical method for two phase flow with unstable interface, J. Comput. Phys., 39 (1981), pp. 179-200.
-
(1981)
J. Comput. Phys
, vol.39
, pp. 179-200
-
-
GLIMM, J.1
MARCHESIN, D.2
MCBRYAN, O.3
-
15
-
-
84943997802
-
Elastic properties of lipid bilayers: Theory and possible experiments
-
W. HELFRICH, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. C, 28 (1973), pp. 693-703.
-
(1973)
Z. Naturforsch. C
, vol.28
, pp. 693-703
-
-
HELFRICH, W.1
-
16
-
-
0001618988
-
Numerical observation of nonaxisymmetric vesicles in fluid membranes
-
Y. JIE, Q. LIU, J. LIU, AND Z. OU-YANG, Numerical observation of nonaxisymmetric vesicles in fluid membranes, Phys. Rev. E, 58 (1998), pp. 4730-4736.
-
(1998)
Phys. Rev. E
, vol.58
, pp. 4730-4736
-
-
JIE, Y.1
LIU, Q.2
LIU, J.3
OU-YANG, Z.4
-
17
-
-
0035289434
-
The Willmore flow with small initial energy
-
E. KUWERT AND R. SCHÄTZLE, The Willmore flow with small initial energy, J. Differential Geom., 57 (2001), pp. 409-441.
-
(2001)
J. Differential Geom
, vol.57
, pp. 409-441
-
-
KUWERT, E.1
SCHÄTZLE, R.2
-
18
-
-
0034268719
-
Numerical study of flows of two immiscible liquids at low Reynolds number
-
J. LI AND Y. RENARDY, Numerical study of flows of two immiscible liquids at low Reynolds number, SIAM Rev., 42 (2000), pp. 417-439.
-
(2000)
SIAM Rev
, vol.42
, pp. 417-439
-
-
LI, J.1
RENARDY, Y.2
-
19
-
-
0003776965
-
-
World Scientific, Singapore
-
Z. OU-YANG, J. LIU, AND Y. XIE, Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, World Scientific, Singapore, 1999.
-
(1999)
Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases
-
-
OU-YANG, Z.1
LIU, J.2
XIE, Y.3
-
21
-
-
0030735760
-
Configurations of fluid membranes and vesicles
-
U. SEIFERT, Configurations of fluid membranes and vesicles, Adv. in Phys., 46 (1997), pp. 13-137.
-
(1997)
Adv. in Phys
, vol.46
, pp. 13-137
-
-
SEIFERT, U.1
-
22
-
-
10244222314
-
A geometric theory on the elasticity of bio-membranes
-
Z. TU AND Z. OU-YANG, A geometric theory on the elasticity of bio-membranes, J. Phys. A, 37 (2004), pp. 11407-11429.
-
(2004)
J. Phys. A
, vol.37
, pp. 11407-11429
-
-
TU, Z.1
OU-YANG, Z.2
-
23
-
-
3242694679
-
A front-tracking method for viscous, incompressible multi-fluid flows
-
S. O. UNVERDI AND G. TRYGGVASON, A front-tracking method for viscous, incompressible multi-fluid flows, J. Comput. Phys., 100 (1992), pp. 25-37.
-
(1992)
J. Comput. Phys
, vol.100
, pp. 25-37
-
-
UNVERDI, S.O.1
TRYGGVASON, G.2
-
24
-
-
29144460508
-
-
Ph.D. thesis, Department of Mathematics, Penn State University, available online from
-
X. WANG, Phase Field Models and Simulations of Vesicle Bio-membranes, Ph.D. thesis, Department of Mathematics, Penn State University, 2005; available online from http://etda. libraries.psu.edu/theses/ approved/WorIdWideFiles/ETD-961/bubble.pdf.
-
(2005)
Phase Field Models and Simulations of Vesicle Bio-membranes
-
-
WANG, X.1
-
25
-
-
52649156882
-
Diffusive interface models for multi-component lipid membranes and open membranes
-
to appear
-
X. WANG AND Q. DU, Diffusive interface models for multi-component lipid membranes and open membranes, J. Math. Biol., to appear.
-
J. Math. Biol
-
-
WANG, X.1
DU, Q.2
-
26
-
-
0004265477
-
-
Oxford Science Publications, Clarendon Press, Oxford University Press, New York
-
T. J. WILLMORE, Riemannian Geometry, Oxford Science Publications, Clarendon Press, Oxford University Press, New York, 1993.
-
(1993)
Riemannian Geometry
-
-
WILLMORE, T.J.1
-
27
-
-
26444612695
-
General mathematical frame for open or closed biomembranes I: Equilibrium theory and geometrically constraint equation
-
Y. YIN, J. YIN, AND D. NI, General mathematical frame for open or closed biomembranes I: Equilibrium theory and geometrically constraint equation, J. Math. Biol., 51 (2005), pp. 403-413.
-
(2005)
J. Math. Biol
, vol.51
, pp. 403-413
-
-
YIN, Y.1
YIN, J.2
NI, D.3
|