-
1
-
-
84954134641
-
Active datamining
-
In M. Fayyad, Usama and U. Ramasamy, editors Montreal, Quebec, Canada, AAAI Press, Menlo Park, CA, USA
-
R. Agrawal and G. Psaila. Active datamining. InM. Fayyad, Usama and U. Ramasamy, editors, Proceedings of the 1st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'95), pages 3-8, Montreal, Quebec, Canada, 1995. AAAI Press, Menlo Park, CA, USA.
-
(1995)
Proceedings of the 1st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'95)
, pp. 3-8
-
-
Agrawal, R.1
Psaila, G.2
-
2
-
-
0016355478
-
A new look at the statistical model identification
-
H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716-723, 1974.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
3
-
-
18444373554
-
A survey on tree edit distance and related problems
-
P. Bille. A survey on tree edit distance and related problems. Theoretical Computer Science, 337(1-3):217-239, 2005.
-
(2005)
Theoretical Computer Science
, vol.337
, Issue.1-3
, pp. 217-239
-
-
Bille, P.1
-
4
-
-
84873281579
-
Towards a framework for change detection in datasets
-
Springer
-
M. Boettcher, D. Nauck, D. Ruta, and M. Spott. Towards a framework for change detection in datasets. In Proceed- ings of the 26th SGAI International Conference on Innova- tive Techniques and Applications of Artificial Intelligence, pages 115-128. Springer, 2006.
-
(2006)
Proceed- ings of the 26th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence
, pp. 115-128
-
-
Boettcher, M.1
Nauck, D.2
Ruta, D.3
Spott, M.4
-
5
-
-
0030344230
-
The heuristics of instability in model selection
-
L. Breiman. The heuristics of instability in model selection. Annals of Statistics, 24:2350-2383, 1996.
-
(1996)
Annals of Statistics
, vol.24
, pp. 2350-2383
-
-
Breiman, L.1
-
6
-
-
0003802343
-
-
Wadsworth, Belmont
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi- cation and Regression Trees. Wadsworth, Belmont, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
7
-
-
8744307994
-
Multimodel inference: Understanding AIC and BIC in model selection
-
DOI 10.1177/0049124104268644
-
K. P. Burnham and D. R. Anderson. Multimodel inference: understanding AIC and BIC inmodel selection. Sociological Methods & Research, 33:261-304, 2004. (Pubitemid 39519124)
-
(2004)
Sociological Methods and Research
, vol.33
, Issue.2
, pp. 261-304
-
-
Burnham, K.P.1
Anderson, D.R.2
-
8
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demš;ar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7:1-30, 2006. (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
11
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
DOI 10.1016/0893-6080(89)90020-8
-
K. Hornik, M. Stinchcombe, and H.White. Multilayer feedforward networks are universal approximators. Neural Net- works, 2(5):359-366, 1989. (Pubitemid 20609008)
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik Kurt1
Stinchcombe Maxwell2
White Halbert3
-
12
-
-
0035789299
-
Mining timechanging data streams
-
New York, NY, USA, ACM Press
-
G. Hulten, L. Spencer, and P. Domingos. Mining timechanging data streams. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discov- ery and Data Mining, pages 97-106, New York, NY, USA, 2001. ACM Press.
-
(2001)
Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
13
-
-
70349119250
-
Regression and time series model selection in small samples
-
C. M. Hurvich and C. L. Tsai. Regression and time series model selection in small samples. Biometrika, 76:297-307, 1989.
-
(1989)
Biometrika
, vol.76
, pp. 297-307
-
-
Hurvich, C.M.1
Tsai, C.L.2
-
15
-
-
84883713774
-
Learning drifting concepts: Example selection vs. example weighting
-
R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intelligent Data Analysis, 8(3):281-300, 2004.
-
(2004)
Intelligent Data Analysis
, vol.8
, Issue.3
, pp. 281-300
-
-
Klinkenberg, R.1
-
16
-
-
78149338936
-
Analyzing the interestingness of association rules from the temporal dimension
-
San Jose, CA
-
B. Liu, Y. Ma, and R. Lee. Analyzing the interestingness of association rules from the temporal dimension. In Proceed- ings of the IEEE International Conference on Data Mining, pages 377-384, San Jose, CA, 2001.
-
(2001)
Proceedings of the IEEE International Conference on Data Mining
, pp. 377-384
-
-
Liu, B.1
Ma, Y.2
Lee, R.3
-
19
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan. Induction of decision trees. Machine Learn- ing, 1(1):81-106, 1996.
-
(1996)
Machine Learn-ing
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
20
-
-
33749564726
-
MONIC - Modeling and monitoring cluster transitions
-
KDD 2006: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. Monic - modeling and monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'06), pages 706-711, Philadelphia, USA, Aug. 2006. ACM. (Pubitemid 44535578)
-
(2006)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, vol.2006
, pp. 706-711
-
-
Spiliopoulou, M.1
Ntoutsi, I.2
Theodoridis, Y.3
Schult, R.4
-
21
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69-101, 1996. (Pubitemid 126737384)
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
-
22
-
-
32344442287
-
Combining proactive and reactive predictions for data streams
-
DOI 10.1145/1081870.1081961, KDD-2005 - Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
Y. Yang, X. Wu, and X. Zhu. Combining proactive and reactive predictions for data streams. In Proceeding of the 11th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining (KDD'05), pages 710- 715, New York, NY, USA, 2005. ACM Press. (Pubitemid 43218344)
-
(2005)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 710-715
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
|