-
1
-
-
0010580277
-
-
West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343.
-
(1981)
Science
, vol.214
, pp. 1343
-
-
West, R.1
Fink, M.J.2
Michl, J.3
-
2
-
-
37049108639
-
-
Brook, A. G.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.; Kallury, R. K. J. Chem. Soc., Chem. Commun. 1981, 191.
-
(1981)
J. Chem. Soc., Chem. Commun
, pp. 191
-
-
Brook, A.G.1
Abdesaken, F.2
Gutekunst, B.3
Gutekunst, G.4
Kallury, R.K.5
-
6
-
-
0000936858
-
-
Rappoport, Z, Apeloig, Y, Eds, Wiley: Chichester, U.K, Chapter 5
-
Weidenbruch, M. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, U.K., 2001; Vol. 3, Chapter 5.
-
(2001)
The Chemistry of Organic Silicon Compounds
, vol.3
-
-
Weidenbruch, M.1
-
7
-
-
0003667074
-
-
Rappoport, Z, Ed, Wiley: Chichester, U.K, Chapter 4
-
Klinkhammer, K. In The Chemistry of Organic Germanium, Tin and Lead Compounds; Rappoport, Z., Ed.; Wiley: Chichester, U.K., 2002; Vol. 2, Part 1, Chapter 4.
-
(2002)
The Chemistry of Organic Germanium, Tin and Lead Compounds
, vol.2
, Issue.PART 1
-
-
Klinkhammer, K.1
-
8
-
-
0003667074
-
-
Rappoport, Z, Ed, Wiley: Chichester, U.K, Chapter 13
-
Tokitoh, N.; Okazaki, R. In The Chemistry of Organic Germanium, Tin and Lead Compounds; Rappoport, Z., Ed.; Wiley: Chichester, U.K., 2002; Vol. 2, Part 1, Chapter 13.
-
(2002)
The Chemistry of Organic Germanium, Tin and Lead Compounds
, vol.2
, Issue.PART 1
-
-
Tokitoh, N.1
Okazaki, R.2
-
13
-
-
0034639901
-
-
Pb analogue: Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 3524.
-
Pb analogue: Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 3524.
-
-
-
-
14
-
-
0036266419
-
-
Ge analogue: Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem., Int. Ed. 2002, 41, 1785.
-
Ge analogue: Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem., Int. Ed. 2002, 41, 1785.
-
-
-
-
15
-
-
31444440364
-
-
Sugiyama, Y.; Sasamori, T.; Hosoi, Y.; Furukawa, Y.; Takagi, N.; Nagase, S.; Tokitoh, N. J. Am. Chem. Soc. 2006, 128, 1023.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 1023
-
-
Sugiyama, Y.1
Sasamori, T.2
Hosoi, Y.3
Furukawa, Y.4
Takagi, N.5
Nagase, S.6
Tokitoh, N.7
-
16
-
-
0037140739
-
-
Sn analogue: Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2002, 124, 5930.
-
Sn analogue: Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2002, 124, 5930.
-
-
-
-
17
-
-
4544372069
-
-
Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science 2004, 305, 1755.
-
(2004)
Science
, vol.305
, pp. 1755
-
-
Sekiguchi, A.1
Kinjo, R.2
Ichinohe, M.3
-
18
-
-
9144225566
-
-
Wiberg, N.; Vasisht, S. K.; Fischer, G.; Mayer, P. Z. Anorg. Allg. Chem. 2004, 630, 1823.
-
(2004)
Z. Anorg. Allg. Chem
, vol.630
, pp. 1823
-
-
Wiberg, N.1
Vasisht, S.K.2
Fischer, G.3
Mayer, P.4
-
19
-
-
54249157453
-
-
Sasamori, T.; Hironaka, K.; Sugiyama, Y.; Takagi, N.; Nagase, S.; Hosoi, Y.; Furukawa, Y.; Tokitoh, N. J. Am. Chem. Soc. 2008, 130, 13856.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 13856
-
-
Sasamori, T.1
Hironaka, K.2
Sugiyama, Y.3
Takagi, N.4
Nagase, S.5
Hosoi, Y.6
Furukawa, Y.7
Tokitoh, N.8
-
20
-
-
34347259842
-
-
Kinjo, R.; Ichinohe, M.; Sekiguchi, A.; Takagi, N.; Sumimoto, M.; Nagase, S. J. Am. Chem. Soc. 2007, 129, 7766.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 7766
-
-
Kinjo, R.1
Ichinohe, M.2
Sekiguchi, A.3
Takagi, N.4
Sumimoto, M.5
Nagase, S.6
-
21
-
-
33846064285
-
-
Kinjo, R.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2007, 129, 26.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 26
-
-
Kinjo, R.1
Ichinohe, M.2
Sekiguchi, A.3
-
23
-
-
58049208383
-
-
Takeuchi, T.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2008, 130, 16848.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 16848
-
-
Takeuchi, T.1
Ichinohe, M.2
Sekiguchi, A.3
-
24
-
-
33750578467
-
-
Sekiguchi, A.; Ichinohe, M.; Kinjo, R. Bull. Chem. Soc. Jpn. 2006, 79, 825.
-
(2006)
Bull. Chem. Soc. Jpn
, vol.79
, pp. 825
-
-
Sekiguchi, A.1
Ichinohe, M.2
Kinjo, R.3
-
25
-
-
33751016802
-
-
Kravchenko, V.; Kinjo, R.; Sekiguchi, A.; Ichinohe, M.; West, R.; Balazs, Y. S.; Schmidt, A.; Karni, M.; Apeloig, Y. J. Am. Chem. Soc. 2006, 128, 14472.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 14472
-
-
Kravchenko, V.1
Kinjo, R.2
Sekiguchi, A.3
Ichinohe, M.4
West, R.5
Balazs, Y.S.6
Schmidt, A.7
Karni, M.8
Apeloig, Y.9
-
27
-
-
66149129756
-
-
For the experimental procedures and spectral data of 2a,b and 3 and the crystal data of 2b, see the Supporting Information.
-
For the experimental procedures and spectral data of 2a,b and 3 and the crystal data of 2b, see the Supporting Information.
-
-
-
-
28
-
-
29044444826
-
-
2) with benzonitrile; see: Cui, C.; Olmstead, M. M.; Fettinger, J. C.; Spikes, G. H.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 17530.
-
2) with benzonitrile; see: Cui, C.; Olmstead, M. M.; Fettinger, J. C.; Spikes, G. H.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 17530.
-
-
-
-
29
-
-
0001370594
-
-
West and Sekiguchi et al. reported the formation of 1,4-disilabarrelenes by heating a bis(7-silanorbornadien-7-yl) derivative in the presence of acetylenes, and they assumed a dimethyldisilyne intermediate that reacted with acetylenes to produce 1,4-disila(Dewar benzene) as one of the possible reaction pathways; see: Sekiguchi, A.; Gillet, G. R.; West, R. Organometallics 1988, 7, 1226.
-
West and Sekiguchi et al. reported the formation of 1,4-disilabarrelenes by heating a bis(7-silanorbornadien-7-yl) derivative in the presence of acetylenes, and they assumed a dimethyldisilyne intermediate that reacted with acetylenes to produce 1,4-disila(Dewar benzene) as one of the possible reaction pathways; see: Sekiguchi, A.; Gillet, G. R.; West, R. Organometallics 1988, 7, 1226.
-
-
-
-
30
-
-
0000303234
-
-
Sekiguchi, A.; Zigler, S. S.; Haller, K. J.; West, R. Recl. Trav. Chim. Pays-Bas 1988, 107, 197.
-
(1988)
Recl. Trav. Chim. Pays-Bas
, vol.107
, pp. 197
-
-
Sekiguchi, A.1
Zigler, S.S.2
Haller, K.J.3
West, R.4
-
31
-
-
0003426786
-
-
Rappoport, Z, Apeloig, Y, Eds, Wiley: Chichester, U.K, Chapter 5
-
Kaftory, M.; Kapon, M.; Botoshansky, M. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, U.K., 1998; Vol. 2, Chapter 5.
-
(1998)
The Chemistry of Organic Silicon Compounds
, vol.2
-
-
Kaftory, M.1
Kapon, M.2
Botoshansky, M.3
-
32
-
-
66149156024
-
-
Patai, S. Ed, Wiley: Chichester, U.K
-
Charton, M. In The Supplement A. The Chemistry of Double-bonded Functional Groups; Patai, S. Ed.; Wiley: Chichester, U.K., 1989; Vol. 2, part 1, p 241.
-
(1989)
The Supplement A. The Chemistry of Double-bonded Functional Groups
, vol.2
, Issue.PART 1
, pp. 241
-
-
Charton, M.1
-
33
-
-
66149125033
-
-
Frisch, M. J. et al. Gaussian 03, revision E.01; Gaussian, Inc., Wallingford, CT, 2004. For the full authors and the Cartesian coordinates of transition states as well as reactant, products, and intermediates, see the Supporting Information.
-
Frisch, M. J. et al. Gaussian 03, revision E.01; Gaussian, Inc., Wallingford, CT, 2004. For the full authors and the Cartesian coordinates of transition states as well as reactant, products, and intermediates, see the Supporting Information.
-
-
-
-
34
-
-
33744904186
-
-
By calculation of vibrational frequencies, the optimized geometries were characterized as energy minima (no imaginary frequency) or transition states (one imaginary frequency, When intrinsic reaction coordinate (IRC) calculations were performed, it was checked that the reaction paths (the connections between minima and transition states) shown in Figure 2 were correct. To check the multiconfigurational (or diradical) character, stability analysis of the spin-restricted B3PW91 solutions was carried out for all the optimized geometries by using the keyword stable in the Gaussian 03 program. It was found that the restricted solutions are all stable to the unrestricted ones, unlike the case in the recent study of related species: Jung, Y, Brynda, M, Power, P. P, Head-Gordon, M. J. Am. Chem. Soc. 2006, 128, 7185
-
By calculation of vibrational frequencies, the optimized geometries were characterized as energy minima (no imaginary frequency) or transition states (one imaginary frequency). When intrinsic reaction coordinate (IRC) calculations were performed, it was checked that the reaction paths (the connections between minima and transition states) shown in Figure 2 were correct. To check the multiconfigurational (or diradical) character, stability analysis of the spin-restricted B3PW91 solutions was carried out for all the optimized geometries by using the keyword "stable" in the Gaussian 03 program. It was found that the restricted solutions are all stable to the unrestricted ones, unlike the case in the recent study of related species: Jung, Y.; Brynda, M.; Power, P. P.; Head-Gordon, M. J. Am. Chem. Soc. 2006, 128, 7185.
-
-
-
|