메뉴 건너뛰기




Volumn 7, Issue 2, 2009, Pages 269-285

Supervised ensembles of prediction methods for subcellular localization

Author keywords

Ensemble classifier; Subcellular localization of proteins

Indexed keywords

AMINO ACID COMPOSITION; AUTOMATION; CELLULAR DISTRIBUTION; CLASSIFIER; CONFERENCE PAPER; INTERMETHOD COMPARISON; K NEAREST NEIGHBOR; MATHEMATICAL COMPUTING; PROTEIN DATABASE; PROTEIN LOCALIZATION; PROTEIN TARGETING; SEQUENCE HOMOLOGY; STATISTICAL ANALYSIS; SUPPORT VECTOR MACHINE; TAXONOMY;

EID: 65449146341     PISSN: 02197200     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219720009004072     Document Type: Conference Paper
Times cited : (8)

References (33)
  • 1
    • 24644450611 scopus 로고    scopus 로고
    • Predicting protein subcellular localization: Past, present, and future
    • Dönnes P, Höglund A, Predicting protein subcellular localization: Past, present, and future, Geno Prot Bioinfo 2(4):209-215, 2004.
    • (2004) Geno Prot Bioinfo , vol.2 , Issue.4 , pp. 209-215
    • Dönnes, P.1    Höglund, A.2
  • 2
    • 0032077533 scopus 로고    scopus 로고
    • Using neural networks for prediction of the subcellular location of proteins
    • Reinhardt A, Hubbart T, Using neural networks for prediction of the subcellular location of proteins, Nucleic Acids Res 26 2230-2236, 1998.
    • (1998) Nucleic Acids Res , vol.26 , pp. 2230-2236
    • Reinhardt, A.1    Hubbart, T.2
  • 3
    • 0347093598 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations using fuzzy k-NN method
    • Huang Y, Li Y, Prediction of protein subcellular locations using fuzzy k-NN method, Bioinformatics 20(1):21-28, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.1 , pp. 21-28
    • Huang, Y.1    Li, Y.2
  • 5
    • 19544388127 scopus 로고    scopus 로고
    • PSLpred: Prediction of subcellular localization of bacterial proteins
    • Bhasin M, Garg A, Raghava GPS, PSLpred: Prediction of subcellular localization of bacterial proteins, Bioinformatics 21 10):2522-2524, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2522-2524
    • Bhasin, M.1    Garg, A.2    Raghava, G.P.S.3
  • 6
    • 0028239038 scopus 로고
    • Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies
    • Nakashima H, Nishikawa K, Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies, J Mol Biol 238(1):54-61, 1994.
    • (1994) J Mol Biol , vol.238 , Issue.1 , pp. 54-61
    • Nakashima, H.1    Nishikawa, K.2
  • 7
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua S, Sun Z, Support vector machine approach for protein subcellular localization prediction, Bioinformatics 17(8):721-728, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.8 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 8
    • 0141515750 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs
    • Park K-J, Kanehisa M, Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs, Bioinformatics 19(13):1656-1663, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1656-1663
    • Park, K.-J.1    Kanehisa, M.2
  • 9
    • 1942505330 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on n-peptide compositions
    • Hwang J-K, Lin C-J, Yu C-S, Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on n-peptide compositions, Protein Science 13:1402-1406, 2004.
    • (2004) Protein Science , vol.13 , pp. 1402-1406
    • Hwang, J.-K.1    Lin, C.-J.2    Yu, C.-S.3
  • 10
    • 0023046815 scopus 로고
    • A new method for predicting signal sequence cleavage sites
    • von Heijne G, A new method for predicting signal sequence cleavage sites, Nucleic Acids Res 14(11):4683-4690, 1986.
    • (1986) Nucleic Acids Res , vol.14 , Issue.11 , pp. 4683-4690
    • von Heijne, G.1
  • 11
    • 0029915525 scopus 로고    scopus 로고
    • Computational method to predict mitochondrially imported proteins and their targeting sequences
    • Claros M-G, Vincens P, Computational method to predict mitochondrially imported proteins and their targeting sequences, Eur J Biochem 241(3):779-786, 1996.
    • (1996) Eur J Biochem , vol.241 , Issue.3 , pp. 779-786
    • Claros, M.-G.1    Vincens, P.2
  • 12
    • 3042521098 scopus 로고    scopus 로고
    • Improved prediction of signal peptides: SignalP 3.0
    • Bendtsen JD, Nielsen H, von Heijne G, Brunak S, Improved prediction of signal peptides: SignalP 3.0, J Mol Biol 340(4):783-795, 2004.
    • (2004) J Mol Biol , vol.340 , Issue.4 , pp. 783-795
    • Bendtsen, J.D.1    Nielsen, H.2    von Heijne, G.3    Brunak, S.4
  • 13
    • 0036187913 scopus 로고    scopus 로고
    • Extensive feature detection of N-terminal protein sorting signals
    • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S, Extensive feature detection of N-terminal protein sorting signals, Bioinformatics 18(2):298-305, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 298-305
    • Bannai, H.1    Tamada, Y.2    Maruyama, O.3    Nakai, K.4    Miyano, S.5
  • 14
    • 2942589051 scopus 로고    scopus 로고
    • Predotar: A tool for rapidly screening proteomes for n-terminal targeting sequences
    • Small I, Peeters N, Legeai F, Lurin C, Predotar: A tool for rapidly screening proteomes for n-terminal targeting sequences, Proteomics 4(6):1581-1590, 2004.
    • (2004) Proteomics , vol.4 , Issue.6 , pp. 1581-1590
    • Small, I.1    Peeters, N.2    Legeai, F.3    Lurin, C.4
  • 15
    • 0034331073 scopus 로고    scopus 로고
    • Finding nuclear localization signals
    • Cokol M, Nair R, Rost B, Finding nuclear localization signals, EMBO Rep 1(5):411-415, 2000.
    • (2000) EMBO Rep , vol.1 , Issue.5 , pp. 411-415
    • Cokol, M.1    Nair, R.2    Rost, B.3
  • 17
    • 0027105007 scopus 로고
    • A knowledge base for predicting protein localization sites in eukaryotic cells
    • Nakai K, Kanehisa M, A knowledge base for predicting protein localization sites in eukaryotic cells, Genomics 14 4):897-911, 1992.
    • (1992) Genomics , vol.14 , Issue.4 , pp. 897-911
    • Nakai, K.1    Kanehisa, M.2
  • 18
    • 0032972509 scopus 로고    scopus 로고
    • PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization
    • Nakai K, Horton P, PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization, Trends Biochem Sci 24(1):34-36, 1999.
    • (1999) Trends Biochem Sci , vol.24 , Issue.1 , pp. 34-36
    • Nakai, K.1    Horton, P.2
  • 19
    • 15844431346 scopus 로고    scopus 로고
    • PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis
    • Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FSL, PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis, Bioinformatics 21(5):617-623, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 617-623
    • Gardy, J.L.1    Laird, M.R.2    Chen, F.3    Rey, S.4    Walsh, C.J.5    Ester, M.6    Brinkman, F.S.L.7
  • 20
  • 21
    • 3242877807 scopus 로고    scopus 로고
    • Bhasin M, Raghava GPS, ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST, Nucleic Acids Res 32Web Server Issue :W414-W419, 2004.
    • Bhasin M, Raghava GPS, ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST, Nucleic Acids Res 32(Web Server Issue :W414-W419, 2004.
  • 22
    • 17644389617 scopus 로고    scopus 로고
    • Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search
    • Garg A, Bhasin M, Raghava GPS, Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search, J Biol Chem 280(15):14427-14432, 2005.
    • (2005) J Biol Chem , vol.280 , Issue.15 , pp. 14427-14432
    • Garg, A.1    Bhasin, M.2    Raghava, G.P.S.3
  • 23
    • 3242875263 scopus 로고    scopus 로고
    • MITOPRED: A genome-scale method for prediction of nucleus-encoded mitochondrial proteins
    • Guda C, Fahy E, Subramaniam S, MITOPRED: A genome-scale method for prediction of nucleus-encoded mitochondrial proteins, Bioinformatics 20(11):1785-1794, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1785-1794
    • Guda, C.1    Fahy, E.2    Subramaniam, S.3
  • 24
    • 33646861792 scopus 로고    scopus 로고
    • MultiLoc: Prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition
    • Höglund A, Döonnes P, Blum T, Adolph H-W, Kohlbacher O, MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition, Bioinformatics 22(10):1158-1165, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1158-1165
    • Höglund, A.1    Döonnes, P.2    Blum, T.3    Adolph, H.-W.4    Kohlbacher, O.5
  • 28
    • 1942505330 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins for gramnegative bacteria by support vector machines based on n-peptide compositions
    • Yu C-S, Lin C-J, Hwang J-K, Predicting subcellular localization of proteins for gramnegative bacteria by support vector machines based on n-peptide compositions, Protein Science 13:1402-1406, 2004.
    • (2004) Protein Science , vol.13 , pp. 1402-1406
    • Yu, C.-S.1    Lin, C.-J.2    Hwang, J.-K.3
  • 29
    • 25444506574 scopus 로고    scopus 로고
    • SVM based protein subcellular localization prediction using multiple physicochemical properties
    • Chua G-H, Li K-B, Krishnan A, Sarda D, pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties, BMC Bioinformatics 6(152), 2005.
    • (2005) BMC Bioinformatics , vol.6 , Issue.152
    • Chua, G.-H.1    Li, K.-B.2    Krishnan, A.3    Sarda, D.4    pSLIP5
  • 30
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Brunak S, Emanuelsson O, von Heijne G, Nielsen H, Predicting subcellular localization of proteins based on their N-terminal amino acid sequence, J Mol Biol 300(4):1005-1016, 2000.
    • (2000) J Mol Biol , vol.300 , Issue.4 , pp. 1005-1016
    • Brunak, S.1    Emanuelsson, O.2    von Heijne, G.3    Nielsen, H.4
  • 31
    • 18244374416 scopus 로고    scopus 로고
    • High performance system for signal peptide prediction: SOSUIsignal
    • Gomi M, Mitaku S, Sonoyama M, High performance system for signal peptide prediction: SOSUIsignal, Chem-Bio Info J 4(4):142-147, 2004.
    • (2004) Chem-Bio Info J , vol.4 , Issue.4 , pp. 142-147
    • Gomi, M.1    Mitaku, S.2    Sonoyama, M.3
  • 32
    • 2942589051 scopus 로고    scopus 로고
    • Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences
    • Legeai F, Lurin C, Peeters N, Small I, Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences, Proteomics 4(6):1581-1590, 2004.
    • (2004) Proteomics , vol.4 , Issue.6 , pp. 1581-1590
    • Legeai, F.1    Lurin, C.2    Peeters, N.3    Small, I.4
  • 33
    • 19544372994 scopus 로고    scopus 로고
    • Prediction of subcellular localization using sequence-biased recurrent networks
    • Boden M, Hawkins J, Prediction of subcellular localization using sequence-biased recurrent networks, Bioinformatics 21 10):2279-2286, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2279-2286
    • Boden, M.1    Hawkins, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.