-
1
-
-
0037623789
-
An epicurean learning approach to gene-expression data classification
-
Albrecht, A., Vinterbo, S.A., Ohno-Machado, L.: An epicurean learning approach to gene-expression data classification. Artificial Intelligence in Medicine 28 (2003) 75-87
-
(2003)
Artificial Intelligence in Medicine
, vol.28
, pp. 75-87
-
-
Albrecht, A.1
Vinterbo, S.A.2
Ohno-Machado, L.3
-
2
-
-
0033692876
-
Tissue classification with gene expression profiles
-
Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakhini, Z.: Tissue classification with gene expression profiles. Journal of Computational Biology 7 (2000) 559-584
-
(2000)
Journal of Computational Biology
, vol.7
, pp. 559-584
-
-
Ben-Dor, A.1
Bruhn, L.2
Friedman, N.3
Nachman, I.4
Schummer, M.5
Yakhini, Z.6
-
3
-
-
0033521657
-
Adult acute myeloid leukaemia: Update on treatment
-
Bishop, J.F.: Adult acute myeloid leukaemia: update on treatment. Medical Journal of Australia 170 (1999) 39-43
-
(1999)
Medical Journal of Australia
, vol.170
, pp. 39-43
-
-
Bishop, J.F.1
-
4
-
-
0141686299
-
Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features
-
Cho, S.-B., Ryu, J.: Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features. Proceedings of the IEEE 90 (2002) 1744-1753
-
(2002)
Proceedings of the IEEE
, vol.90
, pp. 1744-1753
-
-
Cho, S.-B.1
Ryu, J.2
-
5
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97 (2002) 77-87
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
7
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000) 906-914
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
8
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, G., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, G.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
9
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46 (2002) 389-422
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
10
-
-
0034333688
-
A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders
-
Hayashi, Y., Setiono, R., Yoshida, K.: A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders. Artificial Intelligence in Medicine 20 (2000) 205-216
-
(2000)
Artificial Intelligence in Medicine
, vol.20
, pp. 205-216
-
-
Hayashi, Y.1
Setiono, R.2
Yoshida, K.3
-
11
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7 (2001) 673-679
-
(2001)
Nature Medicine
, vol.7
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
Saal, L.H.4
Ladanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antonescu, C.R.9
Peterson, C.10
Meltzer, P.S.11
-
12
-
-
0036083435
-
Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns
-
Li, J., Wong, L.: Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics 18 (2002) 725-734
-
(2002)
Bioinformatics
, vol.18
, pp. 725-734
-
-
Li, J.1
Wong, L.2
-
13
-
-
0000984930
-
How many genes are needed for a discriminant microarray data analysis
-
Lin, S.M., Johnson, K.F. (eds.). Kluwer, Boston, MA
-
Li, W., Yang, Y.: How many genes are needed for a discriminant microarray data analysis. In: Lin, S.M., Johnson, K.F. (eds.): Methods of Microarray Data Analysis. Kluwer, Boston, MA (2001) 137-150
-
(2001)
Methods of Microarray Data Analysis
, pp. 137-150
-
-
Li, W.1
Yang, Y.2
-
14
-
-
0034806364
-
An introduction to arrays
-
Maughan, N.J., Lewis, F.A., Smith, V.: An introduction to arrays. Journal of Pathology 195 (2001) 3-6
-
(2001)
Journal of Pathology
, vol.195
, pp. 3-6
-
-
Maughan, N.J.1
Lewis, F.A.2
Smith, V.3
-
16
-
-
0035860537
-
Machine learning for science: State of the art and future prospects
-
Mjolsness, E., DeCoste, D.: Machine learning for science: state of the art and future prospects. Science 293 (2001) 2051-2055
-
(2001)
Science
, vol.293
, pp. 2051-2055
-
-
Mjolsness, E.1
DeCoste, D.2
-
17
-
-
0036166439
-
Tumor classification by partial least squares using microarray gene expression data
-
Nguyen, D.V., Rocke, D.M.: Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18 (2002) 39-50
-
(2002)
Bioinformatics
, vol.18
, pp. 39-50
-
-
Nguyen, D.V.1
Rocke, D.M.2
-
19
-
-
0035375137
-
Computational analysis of microarray data
-
Quackenbush, J.: Computational analysis of microarray data. Nature Reviews Genetics 2 (2001) 418-427
-
(2001)
Nature Reviews Genetics
, vol.2
, pp. 418-427
-
-
Quackenbush, J.1
-
21
-
-
0034159928
-
Generating concise and accurate classification rules for breast cancer diagnosis
-
Setiono, R.: Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine 18 (2000) 205-219
-
(2000)
Artificial Intelligence in Medicine
, vol.18
, pp. 205-219
-
-
Setiono, R.1
-
22
-
-
2942596534
-
Ensemble machine learning on gene expression data for cancer classification
-
Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics 2 (2003) S75-S83
-
(2003)
Applied Bioinformatics
, vol.2
-
-
Tan, A.C.1
Gilbert, D.2
-
24
-
-
1642327509
-
Rule extraction: Using neural networks or for neural networks?
-
Zhou, Z.-H.: Rule extraction: using neural networks or for neural networks? Journal of Computer Science & Technology 19 (2004) 249-253
-
(2004)
Journal of Computer Science & Technology
, vol.19
, pp. 249-253
-
-
Zhou, Z.-H.1
-
27
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artificial Intelligence 137 (2002) 239-263
-
(2002)
Artificial Intelligence
, vol.137
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
|