메뉴 건너뛰기




Volumn 3916 LNBI, Issue , 2006, Pages 116-123

Generation of comprehensible hypotheses from gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

BIOTECHNOLOGY; GENES; MATHEMATICAL MODELS; TUMORS;

EID: 33745784156     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11691730_12     Document Type: Conference Paper
Times cited : (4)

References (27)
  • 3
    • 0033521657 scopus 로고    scopus 로고
    • Adult acute myeloid leukaemia: Update on treatment
    • Bishop, J.F.: Adult acute myeloid leukaemia: update on treatment. Medical Journal of Australia 170 (1999) 39-43
    • (1999) Medical Journal of Australia , vol.170 , pp. 39-43
    • Bishop, J.F.1
  • 4
    • 0141686299 scopus 로고    scopus 로고
    • Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features
    • Cho, S.-B., Ryu, J.: Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features. Proceedings of the IEEE 90 (2002) 1744-1753
    • (2002) Proceedings of the IEEE , vol.90 , pp. 1744-1753
    • Cho, S.-B.1    Ryu, J.2
  • 5
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97 (2002) 77-87
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 7
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000) 906-914
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 9
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46 (2002) 389-422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 10
    • 0034333688 scopus 로고    scopus 로고
    • A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders
    • Hayashi, Y., Setiono, R., Yoshida, K.: A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders. Artificial Intelligence in Medicine 20 (2000) 205-216
    • (2000) Artificial Intelligence in Medicine , vol.20 , pp. 205-216
    • Hayashi, Y.1    Setiono, R.2    Yoshida, K.3
  • 12
    • 0036083435 scopus 로고    scopus 로고
    • Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns
    • Li, J., Wong, L.: Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics 18 (2002) 725-734
    • (2002) Bioinformatics , vol.18 , pp. 725-734
    • Li, J.1    Wong, L.2
  • 13
    • 0000984930 scopus 로고    scopus 로고
    • How many genes are needed for a discriminant microarray data analysis
    • Lin, S.M., Johnson, K.F. (eds.). Kluwer, Boston, MA
    • Li, W., Yang, Y.: How many genes are needed for a discriminant microarray data analysis. In: Lin, S.M., Johnson, K.F. (eds.): Methods of Microarray Data Analysis. Kluwer, Boston, MA (2001) 137-150
    • (2001) Methods of Microarray Data Analysis , pp. 137-150
    • Li, W.1    Yang, Y.2
  • 16
    • 0035860537 scopus 로고    scopus 로고
    • Machine learning for science: State of the art and future prospects
    • Mjolsness, E., DeCoste, D.: Machine learning for science: state of the art and future prospects. Science 293 (2001) 2051-2055
    • (2001) Science , vol.293 , pp. 2051-2055
    • Mjolsness, E.1    DeCoste, D.2
  • 17
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen, D.V., Rocke, D.M.: Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18 (2002) 39-50
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 19
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • Quackenbush, J.: Computational analysis of microarray data. Nature Reviews Genetics 2 (2001) 418-427
    • (2001) Nature Reviews Genetics , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 21
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono, R.: Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine 18 (2000) 205-219
    • (2000) Artificial Intelligence in Medicine , vol.18 , pp. 205-219
    • Setiono, R.1
  • 22
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics 2 (2003) S75-S83
    • (2003) Applied Bioinformatics , vol.2
    • Tan, A.C.1    Gilbert, D.2
  • 24
    • 1642327509 scopus 로고    scopus 로고
    • Rule extraction: Using neural networks or for neural networks?
    • Zhou, Z.-H.: Rule extraction: using neural networks or for neural networks? Journal of Computer Science & Technology 19 (2004) 249-253
    • (2004) Journal of Computer Science & Technology , vol.19 , pp. 249-253
    • Zhou, Z.-H.1
  • 27
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artificial Intelligence 137 (2002) 239-263
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.