메뉴 건너뛰기




Volumn 130, Issue 14, 2009, Pages

Raman scattering in current-carrying molecular junctions

Author keywords

[No Author keywords available]

Indexed keywords

BIASED JUNCTIONS; CHARGE-TRANSFER; GENERALIZED SCATTERINGS; GROUND ELECTRONIC STATE; INTERFERENCE COMPONENTS; INVERSE PROCESS; ISOLATED MOLECULES; JUNCTION SPECTROSCOPIES; METAL SURFACES; MOLECULAR JUNCTIONS; MOLECULAR STATE; NON EQUILIBRIUMS; NON-EQUILIBRIUM GREEN'S FUNCTIONS; SCATTERING SIGNALS; SURFACE ENHANCED RAMAN SCATTERINGS; VOLTAGE BIAS;

EID: 65249134007     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3109900     Document Type: Article
Times cited : (71)

References (57)
  • 2
    • 65249183596 scopus 로고    scopus 로고
    • (RSC, Cambridge, UK), Vol..
    • L. F. Cohen, Faraday Discussions (RSC, Cambridge, UK, 2006), Vol. 132.
    • (2006) Faraday Discussions , vol.132
    • Cohen, L.F.1
  • 3
    • 15744377096 scopus 로고
    • 0021-9606 10.1063/1.440560.
    • J. Gersten and A. Nitzan, J. Chem. Phys. 0021-9606 10.1063/1.440560 73, 3023 (1980).
    • (1980) J. Chem. Phys. , vol.73 , pp. 3023
    • Gersten, J.1    Nitzan, A.2
  • 6
    • 4243307713 scopus 로고
    • 0009-2614 10.1016/0009-2614(81)85441-3.
    • B. N. J. Persson, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(81)85441- 3 82, 561 (1981).
    • (1981) Chem. Phys. Lett. , vol.82 , pp. 561
    • Persson, B.N.J.1
  • 7
    • 34249950754 scopus 로고    scopus 로고
    • 0066-426X 10.1146/annurev.physchem.58.032806.104607.
    • K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 0066-426X 10.1146/annurev.physchem.58.032806.104607 58, 267 (2007).
    • (2007) Annu. Rev. Phys. Chem. , vol.58 , pp. 267
    • Willets, K.A.1    Van Duyne, R.P.2
  • 10
    • 34547315837 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.2748386.
    • J. R. Lombardi and R. L. Birke, J. Chem. Phys. 0021-9606 10.1063/1.2748386 126, 244709 (2007).
    • (2007) J. Chem. Phys. , vol.126 , pp. 244709
    • Lombardi, J.R.1    Birke, R.L.2
  • 11
  • 12
    • 60649099657 scopus 로고
    • 0021-9606 10.1063/1.1701032.
    • A. C. Albrecht, J. Chem. Phys. 0021-9606 10.1063/1.1701032 34, 1476 (1961).
    • (1961) J. Chem. Phys. , vol.34 , pp. 1476
    • Albrecht, A.C.1
  • 13
    • 0031037501 scopus 로고    scopus 로고
    • 0036-8075 10.1126/science.275.5303.1102.
    • S. Nie and S. R. Emory, Science 0036-8075 10.1126/science.275.5303.1102 275, 1102 (1997).
    • (1997) Science , vol.275 , pp. 1102
    • Nie, S.1    Emory, S.R.2
  • 16
    • 0001167375 scopus 로고
    • 0039-6028 10.1016/0039-6028(81)90595-1.
    • P. K. Aravind, A. Nitzan, and H. Metiu, Surf. Sci. 0039-6028 10.1016/0039-6028(81)90595-1 110, 189 (1981).
    • (1981) Surf. Sci. , vol.110 , pp. 189
    • Aravind, P.K.1    Nitzan, A.2    Metiu, H.3
  • 17
    • 0020845760 scopus 로고
    • 0031-9015 10.1143/JPSJ.52.3853.
    • M. Inoue and K. J. Ohtaka, J. Phys. Soc. Jpn. 0031-9015 10.1143/JPSJ.52.3853 52, 3853 (1983).
    • (1983) J. Phys. Soc. Jpn. , vol.52 , pp. 3853
    • Inoue, M.1    Ohtaka, K.J.2
  • 20
    • 0038442872 scopus 로고    scopus 로고
    • 0036-8075 10.1126/science.1081572.
    • A. Nitzan and M. Ratner, Science 0036-8075 10.1126/science.1081572 300, 1384 (2003).
    • (2003) Science , vol.300 , pp. 1384
    • Nitzan, A.1    Ratner, M.2
  • 27
    • 28844503375 scopus 로고    scopus 로고
    • 0031-9007 10.1103/PhysRevLett.95.206802.
    • M. Galperin and A. Nitzan, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.95.206802 95, 206802 (2005).
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 206802
    • Galperin, M.1    Nitzan, A.2
  • 28
    • 33745311062 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.2204917.
    • M. Galperin and A. Nitzan, J. Chem. Phys. 0021-9606 10.1063/1.2204917 124, 234709 (2006).
    • (2006) J. Chem. Phys. , vol.124 , pp. 234709
    • Galperin, M.1    Nitzan, A.2
  • 29
    • 65249183402 scopus 로고    scopus 로고
    • Lombardi and co-workers have invoked the Herzberg-Teller intensity borrowing concept as used by Tang and Albrecht in their calculation of the contribution of the charge-transfer mechanism to SERS. In the analysis here, based on Eq., this is unnecessary. This concept was introduced in order to explain the appearance of molecular spectral features that are forbidden by symmetry in the Born-Oppenheimer (BO) approximation. However, the zero-order description of the molecule-metal system is not done in the adiabatic BO, but on the "diabatic" level in which the BO picture is applied to the uncoupled molecule and metal systems, leaving their electronic coupling as a perturbative correction in the Hamiltonian. In this representation there is no need to invoke intensity borrowing in a discussion of photon induced charge-transfer transitions between metal(s) and molecule. The actual coupling needs of course to be estimated, and in the present work
    • Lombardi and co-workers have invoked the Herzberg-Teller intensity borrowing concept as used by Tang and Albrecht in their calculation of the contribution of the charge-transfer mechanism to SERS. In the analysis here, based on Eq., this is unnecessary. This concept was introduced in order to explain the appearance of molecular spectral features that are forbidden by symmetry in the Born-Oppenheimer (BO) approximation. However, the zero-order description of the molecule-metal system is not done in the adiabatic BO, but on the "diabatic" level in which the BO picture is applied to the uncoupled molecule and metal systems, leaving their electronic coupling as a perturbative correction in the Hamiltonian. In this representation there is no need to invoke intensity borrowing in a discussion of photon induced charge-transfer transitions between metal(s) and molecule. The actual coupling needs of course to be estimated, and in the present work, we have based our estimate on a model proposed by Persson (Ref.) as discussed at the end of Sec..
  • 31
    • 0000981447 scopus 로고
    • 0003-4916 10.1016/0003-4916(59)90002-8.
    • T. Holstein, Ann. Phys. (N.Y.) 0003-4916 10.1016/0003-4916(59)90002-8 8, 325 (1959).
    • (1959) Ann. Phys. (N.Y.) , vol.8 , pp. 325
    • Holstein, T.1
  • 33
    • 33144480873 scopus 로고    scopus 로고
    • 0163-1829 10.1103/PhysRevB.73.045314.
    • M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B 0163-1829 10.1103/PhysRevB.73.045314 73, 045314 (2006).
    • (2006) Phys. Rev. B , vol.73 , pp. 045314
    • Galperin, M.1    Nitzan, A.2    Ratner, M.A.3
  • 34
    • 3643122627 scopus 로고
    • 0031-9007 10.1103/PhysRevLett.68.2512.
    • Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.68.2512 68, 2512 (1992).
    • (1992) Phys. Rev. Lett. , vol.68 , pp. 2512
    • Meir, Y.1    Wingreen, N.S.2
  • 36
    • 34247120980 scopus 로고    scopus 로고
    • 0163-1829 10.1103/PhysRevB.75.155312.
    • M. Galperin, M. Ratner, and A. Nitzan, Phys. Rev. B 0163-1829 10.1103/PhysRevB.75.155312 75, 155312 (2007).
    • (2007) Phys. Rev. B , vol.75 , pp. 155312
    • Galperin, M.1    Ratner, M.2    Nitzan, A.3
  • 37
    • 33746118703 scopus 로고    scopus 로고
    • 0163-1829 10.1103/PhysRevB.74.033408.
    • J. -S. Wang, J. Wang, and N. Zeng, Phys. Rev. B 0163-1829 10.1103/PhysRevB.74.033408 74, 033408 (2006).
    • (2006) Phys. Rev. B , vol.74 , pp. 033408
    • Wang, J.-S.1    Wang, J.2    Zeng, N.3
  • 38
    • 34547244017 scopus 로고    scopus 로고
    • 1063-651X 10.1103/PhysRevE.75.061128.
    • J. -S. Wang, N. Zeng, J. Wang, and C. K. Gan, Phys. Rev. E 1063-651X 10.1103/PhysRevE.75.061128 75, 061128 (2007).
    • (2007) Phys. Rev. e , vol.75 , pp. 061128
    • Wang, J.-S.1    Zeng, N.2    Wang, J.3    Gan, C.K.4
  • 39
    • 33748138231 scopus 로고    scopus 로고
    • 0163-1829 10.1103/PhysRevB.74.125402.
    • N. Mingo, Phys. Rev. B 0163-1829 10.1103/PhysRevB.74.125402 74, 125402 (2006).
    • (2006) Phys. Rev. B , vol.74 , pp. 125402
    • Mingo, N.1
  • 40
    • 33745625862 scopus 로고    scopus 로고
    • 0031-9007 10.1103/PhysRevLett.96.255503.
    • T. Yamamoto and K. Watanabe, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.96.255503 96, 255503 (2006).
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 255503
    • Yamamoto, T.1    Watanabe, K.2
  • 42
  • 43
    • 0002880361 scopus 로고    scopus 로고
    • 0075-8450 10.1007/3-540-46438-7-7.
    • H. Schoeller, Lect. Notes Phys. 0075-8450 10.1007/3-540-46438-7-7 544, 137 (2000).
    • (2000) Lect. Notes Phys. , vol.544 , pp. 137
    • Schoeller, H.1
  • 44
    • 65249157553 scopus 로고    scopus 로고
    • We use the term normal Raman scattering for the process that starts and ends in the molecular ground state, while inverse Raman starts and ends with the molecule in the excited state. The term normal in the present paper is unrelated to the normal used to distinguish from "resonant."
    • We use the term normal Raman scattering for the process that starts and ends in the molecular ground state, while inverse Raman starts and ends with the molecule in the excited state. The term normal in the present paper is unrelated to the normal used to distinguish from "resonant."
  • 46
    • 65249126111 scopus 로고    scopus 로고
    • Note that the electron-hole contribution to damping rates in the single electron GFs, as taken into account in Refs. 27 and 28, is dropped here for simplicity. In the present consideration we focus on the effect of damping due to electron-hole excitations on the two-particle Green functions, since it is this process which directly influences the Raman signal. The latter enters via the ansatz, Eq., employed in the calculation of excitation operators correlation function.
    • Note that the electron-hole contribution to damping rates in the single electron GFs, as taken into account in Refs. 27 and 28, is dropped here for simplicity. In the present consideration we focus on the effect of damping due to electron-hole excitations on the two-particle Green functions, since it is this process which directly influences the Raman signal. The latter enters via the ansatz, Eq., employed in the calculation of excitation operators correlation function.
  • 47
    • 65249179823 scopus 로고    scopus 로고
    • Due to the assumed weak coupling between the molecular vibration and the thermal bath, the vibrational state density is almost a delta function. Hence the actual character of the distribution is not important, since the vibration population is defined by one point N (ω).
    • Due to the assumed weak coupling between the molecular vibration and the thermal bath, the vibrational state density is almost a delta function. Hence the actual character of the distribution is not important, since the vibration population is defined by one point N (ω).
  • 48
    • 0042220898 scopus 로고
    • 0163-1829 10.1103/PhysRevB.2.3898.
    • S. Doniach, Phys. Rev. B 0163-1829 10.1103/PhysRevB.2.3898 2, 3898 (1970).
    • (1970) Phys. Rev. B , vol.2 , pp. 3898
    • Doniach, S.1
  • 50
    • 65249085882 scopus 로고    scopus 로고
    • In principle, the same ansatz can be used to include damping due to coupling to the laser field; however, we disregard it due to the weak electron-photon coupling assumed.
    • In principle, the same ansatz can be used to include damping due to coupling to the laser field; however, we disregard it due to the weak electron-photon coupling assumed.
  • 51
    • 65249184138 scopus 로고    scopus 로고
    • Equations are obtained by separating the polarization correlation functions into products of correlation functions involving d operators associated with the individual levels (this can be done when these levels do not mix by their interactions with the leads), then applying Wick's theorem to represent these correlation functions as sums of products of single electron GFs for the corresponding levels. The assumption of no level mixing can be relaxed at the price of getting more complex expressions that involve also mixed single electron GFs G 12 >,<
    • Equations are obtained by separating the polarization correlation functions into products of correlation functions involving d operators associated with the individual levels (this can be done when these levels do not mix by their interactions with the leads), then applying Wick's theorem to represent these correlation functions as sums of products of single electron GFs for the corresponding levels. The assumption of no level mixing can be relaxed at the price of getting more complex expressions that involve also mixed single electron GFs G 12 >,<.
  • 52
    • 65249092279 scopus 로고    scopus 로고
    • In Eqs. two energy variables are used for each molecular electronic level. Ej (k) represents the energy variable j associated with level k.
    • In Eqs. two energy variables are used for each molecular electronic level. Ej (k) represents the energy variable j associated with level k.
  • 53
    • 65249154539 scopus 로고    scopus 로고
    • Because each term in Eq. contains a product of two functions S, the substitution of 2 (K) by C2 (K) corresponds to multiplying the state to state flux by ρ R (i) ρ R (f) ≃ ρ R2, in analogy to Eq..
    • Because each term in Eq. contains a product of two functions S, the substitution of 2 (K) by C2 (K) corresponds to multiplying the state to state flux by ρ R (i) ρ R (f) ≃ ρ R2, in analogy to Eq..
  • 54
    • 45149084174 scopus 로고    scopus 로고
    • 0021-9606 10.1063/1.2931540.
    • A. M. Kelley, J. Chem. Phys. 0021-9606 10.1063/1.2931540 128, 224702 (2008).
    • (2008) J. Chem. Phys. , vol.128 , pp. 224702
    • Kelley, A.M.1
  • 57
    • 65249108975 scopus 로고    scopus 로고
    • This result was obtained using the order of magnitude estimate based on Eq., taking R the same molecular radiative rate used to estimate the Raman intensity associated with the molecular process. Note, however, that R in Eq. is the radiative rate associated with a transition dipole of magnitude (e is the electron charge and d molecule-metal distance) that may be considerably larger than a typical molecular radiative rate.
    • This result was obtained using the order of magnitude estimate based on Eq., taking R the same molecular radiative rate used to estimate the Raman intensity associated with the molecular process. Note, however, that R in Eq. is the radiative rate associated with a transition dipole of magnitude (e is the electron charge and d molecule-metal distance) that may be considerably larger than a typical molecular radiative rate.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.