메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1100-1107

Efficient global optimization for exponential family PCA and low-rank matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

CONVEX OBJECTIVES; EFFICIENT GLOBAL OPTIMIZATIONS; EIGENVECTOR COMPUTATIONS; EXPONENTIAL FAMILIES; GENERAL PURPOSE; GLOBAL SOLUTIONS; GLOBAL SOLVERS; LOCAL OPTIMIZATIONS; LOW-RANK MATRICES; NON CONVEXITIES; NON LINEARITIES; NON-GAUSSIAN DATUM; OPTIMIZATION PROBLEMS; OPTIMIZATION PROCEDURES; PRINCIPAL COMPONENTS; SEMI-DEFINITE PROGRAMMING; SOLUTION QUALITIES; SUB-GRADIENT OPTIMIZATIONS;

EID: 64549154855     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ALLERTON.2008.4797683     Document Type: Conference Paper
Times cited : (6)

References (29)
  • 2
    • 64549142967 scopus 로고    scopus 로고
    • Sajama and A. Orlitsky, Semi-parametric exponential family pca, in Proceedings of Advances in Neural Information Processing Systems (NIPS), 17, 2004.
    • Sajama and A. Orlitsky, "Semi-parametric exponential family pca," in Proceedings of Advances in Neural Information Processing Systems (NIPS), vol. 17, 2004.
  • 4
    • 0035421180 scopus 로고    scopus 로고
    • A combined latent class and trait model fo the analysis and visualization of discrete data
    • A. Kaban and M. Girolami, "A combined latent class and trait model fo the analysis and visualization of discrete data," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 8, pp. 859-872, 2001.
    • (2001) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.23 , Issue.8 , pp. 859-872
    • Kaban, A.1    Girolami, M.2
  • 11
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvarinen and E. Oja, "Independent component analysis: Algorithms and applications," Neural Networks, vol. 13, no. 4-5, pp. 411-430, 2000.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 15
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 16
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. de Silva, and J. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    de Silva, V.2    Langford, J.3
  • 18
    • 58149421595 scopus 로고
    • Analysis of complex statistical variables into components
    • H. Hotelling, "Analysis of complex statistical variables into components," Journal of Educational Psychology, vol. 24, pp. 417-441, 1933.
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 19
    • 34250080273 scopus 로고
    • Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices
    • M. Overton and R. Womersley, "Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices," Mathematical Programming, vol. 62, pp. 321-357, 1993.
    • (1993) Mathematical Programming , vol.62 , pp. 321-357
    • Overton, M.1    Womersley, R.2
  • 22
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principle component analysis with gaussian process latent variable models
    • N. Lawrence, "Probabilistic non-linear principle component analysis with gaussian process latent variable models," Journal of Machine Learning Research, vol. 6, pp. 1783-1816, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.1
  • 27
    • 39449098473 scopus 로고    scopus 로고
    • Approximating k-means-type clustering via semidefinite programming
    • J. Peng and Y. Wei, "Approximating k-means-type clustering via semidefinite programming," SIAM Journal on Optimization, vol. 18, no. 1, pp. 186-205, 2007.
    • (2007) SIAM Journal on Optimization , vol.18 , Issue.1 , pp. 186-205
    • Peng, J.1    Wei, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.