-
1
-
-
0242622469
-
-
Stavenga, D. G, De Grip, W. J, Pugh, E. N, Jr, Eds, Elsevier: Amsterdam
-
De Grip, W. J.; Rothschild, K. J. In Molecular Mechanisms of Visual Transduction; Stavenga, D. G., De Grip, W. J., Pugh, E. N., Jr., Eds.; Elsevier: Amsterdam, 2000; p 1.
-
(2000)
Molecular Mechanisms of Visual Transduction
, pp. 1
-
-
De Grip, W.J.1
Rothschild, K.J.2
-
2
-
-
4644223055
-
-
(a) Yan, E. C. Y.; Ganim, Z.; Kazmi, M. A.; Chang, B. S. W.; Sakmar, T. P.; Mathies, R. A. Biochemistry 2004, 43, 10867-10876.
-
(2004)
Biochemistry
, vol.43
, pp. 10867-10876
-
-
Yan, E.C.Y.1
Ganim, Z.2
Kazmi, M.A.3
Chang, B.S.W.4
Sakmar, T.P.5
Mathies, R.A.6
-
3
-
-
27744493897
-
-
(b) Kukura, P.; McCamant, D. W.; Yoon, S.; Wandschneider, D. B.; Mathies, R. A. Science 2005, 310, 1006-1009.
-
(2005)
Science
, vol.310
, pp. 1006-1009
-
-
Kukura, P.1
McCamant, D.W.2
Yoon, S.3
Wandschneider, D.B.4
Mathies, R.A.5
-
4
-
-
0035385140
-
-
(a) Rando, R. R. Chem. Rev. 2001, 101, 1881-1896.
-
(2001)
Chem. Rev
, vol.101
, pp. 1881-1896
-
-
Rando, R.R.1
-
5
-
-
4143120058
-
-
(b) Fishkin, N.; Berova, N.; Nakanishi, K. Chem. Rec. 2004, 4, 120-135.
-
(2004)
Chem. Rec
, vol.4
, pp. 120-135
-
-
Fishkin, N.1
Berova, N.2
Nakanishi, K.3
-
6
-
-
0034982559
-
-
(a) McBee, J. K.; Palczewski, K.; Baehr, W.; Pepperberg, D. R. Prog. Ret. Eye Res. 2001, 20, 469-529.
-
(2001)
Prog. Ret. Eye Res
, vol.20
, pp. 469-529
-
-
McBee, J.K.1
Palczewski, K.2
Baehr, W.3
Pepperberg, D.R.4
-
8
-
-
0027428727
-
-
Barlow, R.; Birge, R.; Kaplan, E.; Tallent, J. Nature 1993, 366, 64-66.
-
(1993)
Nature
, vol.366
, pp. 64-66
-
-
Barlow, R.1
Birge, R.2
Kaplan, E.3
Tallent, J.4
-
9
-
-
0345687949
-
-
Valle, L. J. D.; Ramon, E.; Bosch, L.; Manyosa, J.; Garriga, P. Cell. Mol. Life Sci. 2003, 60, 2532-2537, The authors pointed out that the thermal instability of rhodopsin at 55 °C may suggest a connection between some retinal diseases and mutations in the apoprotein that mimic the destabilizing effect of the temperature.
-
Valle, L. J. D.; Ramon, E.; Bosch, L.; Manyosa, J.; Garriga, P. Cell. Mol. Life Sci. 2003, 60, 2532-2537, The authors pointed out that the thermal instability of rhodopsin at 55 °C may suggest a connection between some retinal diseases and mutations in the apoprotein that mimic the destabilizing effect of the temperature.
-
-
-
-
12
-
-
33645527222
-
-
Gascon, J. A.; Sproviero, E. M.; Batista, V. S. Acc. Chem. Res. 2006, 39, 184-193.
-
(2006)
Acc. Chem. Res
, vol.39
, pp. 184-193
-
-
Gascon, J.A.1
Sproviero, E.M.2
Batista, V.S.3
-
13
-
-
0017714656
-
-
(a) Sperling, W.; Carl, P.; Rafferty, Ch. N.; Dencher, N. A. Biophys. Struct. Mech. 1977, 3, 79-94.
-
(1977)
Biophys. Struct. Mech
, vol.3
, pp. 79-94
-
-
Sperling, W.1
Carl, P.2
Rafferty, C.N.3
Dencher, N.A.4
-
15
-
-
0023315713
-
-
Bonacic-Koutecky, V.; Koutecky, J.; Michl, J. Angew. Chem., Int. Ed. 1987, 26, 170-189.
-
(1987)
Angew. Chem., Int. Ed
, vol.26
, pp. 170-189
-
-
Bonacic-Koutecky, V.1
Koutecky, J.2
Michl, J.3
-
16
-
-
64549145075
-
-
Some thermal experiments showed that 13-cis-retinal 2 produced ca. 10% all-trans-retinal 3 upon prolonged heating even in carefully deactivated glassware. But under these conditions, the 13-cis 2 and all-trans 3 ratio never reach the ca. 65:35 ratio found in the thermal isomerization of 11-cis-retinal 1.
-
Some thermal experiments showed that 13-cis-retinal 2 produced ca. 10% all-trans-retinal 3 upon prolonged heating even in carefully deactivated glassware. But under these conditions, the 13-cis 2 and all-trans 3 ratio never reach the ca. 65:35 ratio found in the thermal isomerization of 11-cis-retinal 1.
-
-
-
-
17
-
-
64549106949
-
-
In the restricted environment of the opsin protein (as has been found in bacteriorhodopsin, the proton pumping device of halobacteria, which uses a protonated Schiff base of all-trans-retinal as chromophore) or in the solid state, retinoids have been reported to undergo double-bond isomerizations via concerted motions hula twist and bicycle pedal, see
-
In the restricted environment of the opsin protein (as has been found in bacteriorhodopsin, the proton pumping device of halobacteria, which uses a protonated Schiff base of all-trans-retinal as chromophore) or in the solid state, retinoids have been reported to undergo double-bond isomerizations via concerted motions (hula twist and bicycle pedal); see:
-
-
-
-
19
-
-
0032996356
-
-
Baudry, J, Crouzy, S, Roux, B, Smith, J. C. Biophys. J. 1999, 76, 1909-1917. The same studies accept that, in solution, the most favored isomerization mechanism is the sequential pathway, where each double-bond rotation occurs as a single and independent step. We thoroughly explored this possibility and reached similar conclusions: the concerted isomer-ization about C11-C12 and C13-C14 lies very high in energy (ca. 48.6 kcal/ mol) and the stationary point associated with such a transformation was found to be a second-order saddle point (see the Supporting Information, Other theoretical studies rule out the bicycle pedal motion of the photoexcited chromophore, which moreover appears to restrict its movement to the C10-C11-C12-C13 fragment a so-called photochemical hot spot, whereas the rest of the molecule begins to rotate only upon relaxation to the ground state; see
-
(b) Baudry, J.; Crouzy, S.; Roux, B.; Smith, J. C. Biophys. J. 1999, 76, 1909-1917. The same studies accept that, in solution, the most favored isomerization mechanism is the sequential pathway, where each double-bond rotation occurs as a single and independent step. We thoroughly explored this possibility and reached similar conclusions: the concerted isomer-ization about C11-C12 and C13-C14 lies very high in energy (ca. 48.6 kcal/ mol) and the stationary point associated with such a transformation was found to be a second-order saddle point (see the Supporting Information). Other theoretical studies rule out the bicycle pedal motion of the photoexcited chromophore, which moreover appears to restrict its movement to the C10-C11-C12-C13 fragment (a so-called "photochemical hot spot"), whereas the rest of the molecule begins to rotate only upon relaxation to the ground state; see:
-
-
-
-
21
-
-
64549142840
-
-
Okamura, W. H.; de Lera, A. R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A.,Ed.; Pergamon Press: London, 1991; 5, Chapter 6.2, pp 699-750.
-
(a) Okamura, W. H.; de Lera, A. R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A.,Volume Ed.; Pergamon Press: London, 1991; Vol. 5, Chapter 6.2, pp 699-750.
-
-
-
-
22
-
-
64549138934
-
-
Marvell, E. N. Thermal Electrocyclic Reactions; Academic Press: New York, 1980. (c) Burnier, J. S.;Jorgensen, W. L. J. Org. Chem. 1984, 49, 3001-3020.
-
(b) Marvell, E. N. Thermal Electrocyclic Reactions; Academic Press: New York, 1980. (c) Burnier, J. S.;Jorgensen, W. L. J. Org. Chem. 1984, 49, 3001-3020.
-
-
-
-
23
-
-
0029985705
-
-
(a) Sakai, N.; Decatur, J.; Nakanishi, K.; Eldred, G. E. J. Am. Chem. Soc. 1996, 115, 1559-1560.
-
(1996)
J. Am. Chem. Soc
, vol.115
, pp. 1559-1560
-
-
Sakai, N.1
Decatur, J.2
Nakanishi, K.3
Eldred, G.E.4
-
24
-
-
0032438193
-
-
(b) Parish, C. A.; Hashimoto, M.; Nakanishi, K.; Dillon, J.; Sparrow, J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 14609-14613.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A
, vol.95
, pp. 14609-14613
-
-
Parish, C.A.1
Hashimoto, M.2
Nakanishi, K.3
Dillon, J.4
Sparrow, J.5
-
25
-
-
0035907470
-
-
(c) Ben-Shabat, S.; Parish, C. A.; Hashimoto, M.; Liu, J.; Nakanishi, K.; Sparrow, J. R. Bioorg. Med. Chem. Lett. 2001, 11, 1533-1540.
-
(2001)
Bioorg. Med. Chem. Lett
, vol.11
, pp. 1533-1540
-
-
Ben-Shabat, S.1
Parish, C.A.2
Hashimoto, M.3
Liu, J.4
Nakanishi, K.5
Sparrow, J.R.6
-
26
-
-
0141940638
-
-
For the synthesis of A2E model systems involving an aza-6n-electrocyclization of Schiff bases, see
-
(d) Fishkin, N.; Jang, Y.-P.; Itagaki, Y.; Sparrow, J. R.; Nakanishi, K. Org. Biomol. Chem. 2003, 1, 1101-1105. For the synthesis of A2E model systems involving an aza-6n-electrocyclization of Schiff bases, see:
-
(2003)
Org. Biomol. Chem
, vol.1
, pp. 1101-1105
-
-
Fishkin, N.1
Jang, Y.-P.2
Itagaki, Y.3
Sparrow, J.R.4
Nakanishi, K.5
-
28
-
-
18844379122
-
-
A dimerization mode of retinal alternative to that leading to A2E involves also a pericyclic reaction and affords a pigment epithelial cell fluorophore: Fishkin, N.; Sparrow, J. R.; Allikmets, R.; Nakanishi, K. Proc. Natl. Acad. SciU.S.A. 2005, 102, 7091-7096.
-
A dimerization mode of retinal alternative to that leading to A2E involves also a pericyclic reaction and affords a pigment epithelial cell fluorophore: Fishkin, N.; Sparrow, J. R.; Allikmets, R.; Nakanishi, K. Proc. Natl. Acad. SciU.S.A. 2005, 102, 7091-7096.
-
-
-
-
29
-
-
33845280286
-
-
Okamura, W. H.; Lera, A. R. D.; Reischl, W. J. Am. Chem. Soc. 1988, 110, 4462-4464. (b) de Lera, A.; Reischl, W.; Okamura, W. J. Am. Chem. Soc. 1989, 111, 4051-4063.
-
(a) Okamura, W. H.; Lera, A. R. D.; Reischl, W. J. Am. Chem. Soc. 1988, 110, 4462-4464. (b) de Lera, A.; Reischl, W.; Okamura, W. J. Am. Chem. Soc. 1989, 111, 4051-4063.
-
-
-
-
30
-
-
64549106948
-
-
The ring-closure activation energy computed (49.77 kcal/mol) is in good agreement with previous computations of analogous systems at the MP4SDTQ/
-
The ring-closure activation energy computed (49.77 kcal/mol) is in good agreement with previous computations of analogous systems at the MP4SDTQ/
-
-
-
-
31
-
-
11944268609
-
-
6-31G(d) level; see: Yu, H, Chan, W. T, Goddard, J. D. J. Am. Chem. Soc. 1990, 112, 7529-7537
-
6-31G(d) level; see: Yu, H.; Chan, W. T.; Goddard, J. D. J. Am. Chem. Soc. 1990, 112, 7529-7537.
-
-
-
-
32
-
-
0347793496
-
-
The mechanism of isomerization of di-cis-dienals and dienones to the monocis isomers through formation of a-pyrans had been previously studied by Kluge and Lillya: (a) Kluge, A. F.; Lillya, C. P. J. Org. Chem. 1971, 36, 1977-1988.
-
The mechanism of isomerization of di-cis-dienals and dienones to the monocis isomers through formation of a-pyrans had been previously studied by Kluge and Lillya: (a) Kluge, A. F.; Lillya, C. P. J. Org. Chem. 1971, 36, 1977-1988.
-
-
-
-
34
-
-
64549151418
-
-
11,13-Di-cis-retinal was first shown to convert to 13-cis-retinal by Wald et al. in 1955: Wald, G.; Hubbard, R.; Brown, P. K.; Oroshnik, W. Proc. Natl. Acad. Sci. U.S.A. 1955, 41, 438-451.
-
(a) 11,13-Di-cis-retinal was first shown to convert to 13-cis-retinal by Wald et al. in 1955: Wald, G.; Hubbard, R.; Brown, P. K.; Oroshnik, W. Proc. Natl. Acad. Sci. U.S.A. 1955, 41, 438-451.
-
-
-
-
35
-
-
0020556367
-
-
The isomerization of the 11-cis double bond of 11,13-di-cis-retinal and 9,11,13-tri-cis-retinal was studied by Okamura: Knudsen, C. G.; Chandraratna, R. A. S.; Walkeapaa, L. P.; Chauhan, Y. S.; Carey, S. C.; Cooper, T. M.; Birge, R. R.; Okamura, W. H. J. Am. Chem. Soc. 1983, 105, 1626-1631.
-
(b) The isomerization of the 11-cis double bond of 11,13-di-cis-retinal and 9,11,13-tri-cis-retinal was studied by Okamura: Knudsen, C. G.; Chandraratna, R. A. S.; Walkeapaa, L. P.; Chauhan, Y. S.; Carey, S. C.; Cooper, T. M.; Birge, R. R.; Okamura, W. H. J. Am. Chem. Soc. 1983, 105, 1626-1631.
-
-
-
-
36
-
-
0026568881
-
-
In addition, Liu described the thermal rearrangement of the four labile isomers of retinal (11,13-di-cis, 7,11,13-tri-cis, 9,11,13-tri-cis, and all-cis-retinal) presumably occurring via consecutive 6ne--heteroelectrocyclization reactions and determined the kinetic parameters of these processes: Zhu, Y, Ganapathy, S, Liu, R. S. H. J. Org. Chem. 1992, 57, 1110-1113
-
(c) In addition, Liu described the thermal rearrangement of the four labile isomers of retinal (11,13-di-cis-, 7,11,13-tri-cis-, 9,11,13-tri-cis-, and all-cis-retinal) presumably occurring via consecutive 6ne--heteroelectrocyclization reactions and determined the kinetic parameters of these processes: Zhu, Y.; Ganapathy, S.; Liu, R. S. H. J. Org. Chem. 1992, 57, 1110-1113.
-
-
-
-
37
-
-
0001261240
-
-
Dolbier, W. R., Jr.; Koroniak, H.; Houk, K. N.; Sheu, C. Acc. Chem. Res. 1996, 29, 471-477.
-
(1996)
Acc. Chem. Res
, vol.29
, pp. 471-477
-
-
Dolbier Jr., W.R.1
Koroniak, H.2
Houk, K.N.3
Sheu, C.4
-
38
-
-
0001282465
-
-
For the first demonstration of the antarafacial nature of a [1,7]-H hydrogen shift in the previtamin D series, see: (a) Hoeger, C. A.; Okamura, W. H. J. Am. Chem. Soc. 1985, 107, 268-269.
-
For the first demonstration of the antarafacial nature of a [1,7]-H hydrogen shift in the previtamin D series, see: (a) Hoeger, C. A.; Okamura, W. H. J. Am. Chem. Soc. 1985, 107, 268-269.
-
-
-
-
39
-
-
0000094675
-
-
(b) Hoeger, C. A.; Johnston, A. D.; Okamura, W. H. J. Am. Chem. Soc. 1987, 109, 4690-4698.
-
(1987)
J. Am. Chem. Soc
, vol.109
, pp. 4690-4698
-
-
Hoeger, C.A.1
Johnston, A.D.2
Okamura, W.H.3
-
40
-
-
64549121130
-
-
Using the Maxwell-Boltzmann distribution
-
Using the Maxwell-Boltzmann distribution.
-
-
-
-
41
-
-
64549115919
-
-
Isotope effects (kH/kD of about 6) have been measured in the [1,7]-H sigmatropic shift of the previtamin D system:
-
Isotope effects (kH/kD of about 6) have been measured in the [1,7]-H sigmatropic shift of the previtamin D system:
-
-
-
-
42
-
-
0023824605
-
-
(a) Okamura, W. H.; Hoeger, C. A.; Miller, K. J.; Reischl, W. J. Am. Chem. Soc. 1988,110, 973-974.
-
(1988)
J. Am. Chem. Soc
, vol.110
, pp. 973-974
-
-
Okamura, W.H.1
Hoeger, C.A.2
Miller, K.J.3
Reischl, W.4
-
43
-
-
0027513477
-
-
For simple trienes, the values are lower; see
-
(b) For simple trienes, the values are lower; see: Okamura, W. H.; Elnagar, H. Y.; Ruther, M.; Dobreff, S. J. Org. Chem. 1993, 58, 600-610.
-
(1993)
J. Org. Chem
, vol.58
, pp. 600-610
-
-
Okamura, W.H.1
Elnagar, H.Y.2
Ruther, M.3
Dobreff, S.4
-
44
-
-
64549087191
-
-
all-trans-Retinal-14,19,19-d3 is formed by direct rotation about the C11-C12doublebondin11-cis-retinal-14,19,19-d3which, inturn, isformedvia[1,7]-H sigmatropic shift driven H/D scrambling from the parent 11-cis-retinal-19,19,19-d3 (see Figure 5).
-
all-trans-Retinal-14,19,19-d3 is formed by direct rotation about the C11-C12doublebondin11-cis-retinal-14,19,19-d3which, inturn, isformedvia[1,7]-H sigmatropic shift driven H/D scrambling from the parent 11-cis-retinal-19,19,19-d3 (see Figure 5).
-
-
-
-
45
-
-
27444442393
-
-
Sreeruttun, R. K.; Ramasami, P.; Wannere, C. S.; Paul, A.; von R. Schleyer, P.; Schaeffer, H F., III. J. Org. Chem. 2005, 70, 8676-8686.
-
(2005)
J. Org. Chem
, vol.70
, pp. 8676-8686
-
-
Sreeruttun, R.K.1
Ramasami, P.2
Wannere, C.S.3
Paul, A.4
von, R.5
Schleyer, P.6
Schaeffer III, H.F.7
-
46
-
-
0000019486
-
-
Francesch, A.; Alvarez, R.; Lopez, S.; de Lera, A. R. J. Org. Chem. 1997, 62, 310-319.
-
(1997)
J. Org. Chem
, vol.62
, pp. 310-319
-
-
Francesch, A.1
Alvarez, R.2
Lopez, S.3
de Lera, A.R.4
-
47
-
-
4243553426
-
-
(a) Becke, A. D. Phys. Rev.A1988, 38, 3098-3100.
-
(1988)
Phys. Re
, vol.A
, Issue.38
, pp. 3098-3100
-
-
Becke, A.D.1
-
49
-
-
0345491105
-
-
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev.B.1988, 37, 785-789.
-
(1988)
Phys. Rev.B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
50
-
-
0003422992
-
-
2nd ed, Gaussian, Inc, Pittsburgh, PA
-
Foresman, J. B. Frisch, E. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.
-
(1996)
Exploring Chemistry with Electronic Structure Methods
-
-
Foresman, J.B.1
Frisch, E.2
|