메뉴 건너뛰기




Volumn 1158, Issue , 2009, Pages 93-101

The five-gene-network data analysis with local causal discovery algorithm using causal bayesian networks

Author keywords

Causal Bayesian networks; Causal discovery; Gene networks; High throughput data analysis; Microarray data analysis

Indexed keywords

ARTICLE; BAYES THEOREM; EXCITATORY JUNCTION POTENTIAL; GENETIC ANALYSIS; INHIBITION KINETICS; METHODOLOGY; MICROARRAY ANALYSIS; NERVE CELL NETWORK; SCORING SYSTEM;

EID: 63849332382     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2008.03749.x     Document Type: Article
Times cited : (10)

References (19)
  • 2
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., D. Geiger D. Chickering. 1995. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20 : 197 243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 3
    • 80053136667 scopus 로고    scopus 로고
    • A Theoretical Study of y Structures for Causal Discovery
    • In. Cambridge, MA.
    • Mani, S., G. Cooper P. Spirtes. 2006. A Theoretical Study of Y Structures for Causal Discovery. In UAI. Cambridge, MA.
    • (2006) UAI.
    • Mani, S.1    Cooper, G.2    Spirtes, P.3
  • 4
    • 0041035115 scopus 로고
    • InProceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann. San Mateo, CA. pp.
    • Heckerman, D. 1995. A Bayesian approach to learning causal networks. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann. San Mateo, CA, pp. 285 295.
    • (1995) A Bayesian Approach to Learning Causal Networks , pp. 285-295
    • Heckerman, D.1
  • 5
    • 0035860545 scopus 로고    scopus 로고
    • Pathway databases: A case study in computational symbolic theories
    • Karp, P.D. 2001. Pathway databases: A case study in computational symbolic theories. Science 293 : 2040 2044.
    • (2001) Science , vol.293 , pp. 2040-2044
    • Karp, P.D.1
  • 6
    • 0035860541 scopus 로고    scopus 로고
    • Blazing pathways through genetic mountains
    • Gifford, D.K. 2001. Blazing pathways through genetic mountains. Science 293 : 2049 2051.
    • (2001) Science , vol.293 , pp. 2049-2051
    • Gifford, D.K.1
  • 7
    • 0035860537 scopus 로고    scopus 로고
    • Machine learning for Science: State of art and future prospects
    • Mjolsness, E. D. DeCoste. 2001. Machine learning for Science: State of art and future prospects. Science 293 : 2051 2055.
    • (2001) Science , vol.293 , pp. 2051-2055
    • Mjolsness, E.1    Decoste, D.2
  • 8
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: A brief overview, March 1, 2002
    • Kitano, H. 2002. Systems biology: A brief overview, March 1, 2002. Science 295 : 1662 1664.
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 9
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models. Science 303 : 799 805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 10
    • 22044448669 scopus 로고    scopus 로고
    • Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
    • Wille, A. et al. 2004. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol. 5 : R92.1 R92.13.
    • (2004) Genome Biol. , vol.5
    • Wille, A.1
  • 11
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal, M. et al. 2005. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21 : 349 356.
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.1
  • 12
    • 3042632570 scopus 로고    scopus 로고
    • An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways
    • Yoo, C. G. Cooper. 2004. An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways. J. Artif. Intell. Med. 31 : 169 182.
    • (2004) J. Artif. Intell. Med. , vol.31 , pp. 169-182
    • Yoo, C.1    Cooper, G.2
  • 13
    • 0007047929 scopus 로고    scopus 로고
    • InProceedings of the Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann. San Mateo, CA. pp.
    • Cooper, G.F. C. Yoo. 1999. Causal discovery from a mixture of experimental and observational data. In Proceedings of the Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann. San Mateo, CA, pp. 116 125.
    • (1999) Causal Discovery from A Mixture of Experimental and Observational Data , pp. 116-125
    • Cooper, G.F.1    Yoo, C.2
  • 14
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G.F. E. Herskovits. 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 : 309 347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 15
    • 0003391330 scopus 로고
    • Probabilistic Reasoning in Intelligent Systems
    • In. R.J. Brachman. Ed. Morgan Kaufmann. San Mateo, CA.
    • Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems. In Representation and Reasoning. R.J. Brachman, Ed. Morgan Kaufmann. San Mateo, CA.
    • (1988) Representation and Reasoning.
    • Pearl, J.1
  • 16
    • 3042677828 scopus 로고    scopus 로고
    • Causal discovery of latent-variable models from a mixture of experimental and observational data
    • In. Center for Biomedical Informatics. Pittsburgh, PA. Online publication.
    • Yoo, C. G. Cooper. 2001. Causal discovery of latent-variable models from a mixture of experimental and observational data. In Center for Biomedical Informatics Research Report CBMI-173. Center for Biomedical Informatics. Pittsburgh, PA. Online publication.
    • (2001) Center for Biomedical Informatics Research Report CBMI-173.
    • Yoo, C.1    Cooper, G.2
  • 17
    • 0036358442 scopus 로고    scopus 로고
    • Discovery of a gene-regulation pathway from a mixture of experimental and observational DNA microarray data
    • In. World Scientific. Maui, Hawaii. pp.
    • Yoo, C., V. Thorsson G.F. Cooper. 2002. Discovery of a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. In Pacific Symposium on Biocomputing. World Scientific. Maui, Hawaii, pp. 498 509.
    • (2002) Pacific Symposium on Biocomputing. , pp. 498-509
    • Yoo, C.1    Thorsson, V.2    Cooper, G.F.3
  • 19
    • 0036356287 scopus 로고    scopus 로고
    • Discovery of gene-regulation pathways using local causal search
    • In. San Antonio, Texas. pp.
    • Yoo, C. G. Cooper. 2002. Discovery of gene-regulation pathways using local causal search. In AMIA. San Antonio, Texas, pp. 914 918.
    • (2002) AMIA. , pp. 914-918
    • Yoo, C.1    Cooper, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.