-
1
-
-
63749098541
-
-
References to phononic and photonic crystals can be found at and http://phys.lsu.edu/~jdowling/pbgbib.html.
-
References to phononic and photonic crystals can be found at http://www.phys.uoa.gr/phononics/PhononicDatabase.html and http://phys.lsu.edu/ ~jdowling/pbgbib.html.
-
-
-
-
4
-
-
3242887087
-
-
M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 2022
-
-
Kushwaha, M.S.1
Halevi, P.2
Dobrzynski, L.3
Djafari-Rouhani, B.4
-
9
-
-
10844291689
-
-
J. H. Page, A. Sukhovich, S. Yang, M. L. Cowan, F. Van Der Biest, A. Tourin, M. Fink, Z. Liu, C. T. Chan, and P. Sheng, Phys. Status Solidi B 241, 3454 (2004).
-
(2004)
Phys. Status Solidi B
, vol.241
, pp. 3454
-
-
Page, J.H.1
Sukhovich, A.2
Yang, S.3
Cowan, M.L.4
Van Der Biest, F.5
Tourin, A.6
Fink, M.7
Liu, Z.8
Chan, C.T.9
Sheng, P.10
-
10
-
-
4043142031
-
-
S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 93, 024301 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 024301
-
-
Yang, S.1
Page, J.H.2
Liu, Z.3
Cowan, M.L.4
Chan, C.T.5
Sheng, P.6
-
12
-
-
54749101198
-
-
A.-C. Hladky-Hennion, J. Vasseur, B. Dubus, B. Djafari-Rouhani, D. Ekeom, and B. Morvan, J. Appl. Phys. 104, 064906 (2008).
-
(2008)
J. Appl. Phys.
, vol.104
, pp. 064906
-
-
Hladky-Hennion, A.-C.1
Vasseur, J.2
Dubus, B.3
Djafari-Rouhani, B.4
Ekeom, D.5
Morvan, B.6
-
13
-
-
0242492823
-
-
P. Sheng, X. X. Zhang, Z. Liu, and C. T. Chan, Physica B 338, 201 (2003).
-
(2003)
Physica B
, vol.338
, pp. 201
-
-
Sheng, P.1
Zhang, X.X.2
Liu, Z.3
Chan, C.T.4
-
16
-
-
63749087602
-
-
In sensor technology, active elements such as shape memory and piezoelectric inserts or patches are distributed periodically along the active device Refs. in order to enable the filtering properties of the system; ways to tune the width of stobands are described in Refs..
-
In sensor technology, active elements such as shape memory and piezoelectric inserts or patches are distributed periodically along the active device Refs. in order to enable the filtering properties of the system; ways to tune the width of stop bands are described in Refs..
-
-
-
-
19
-
-
0000781133
-
-
X. Zhang, Z.-Q. Zhang, L.-M. Li, C. Jin, D. Zhang, B. Man, and B. Cheng, Phys. Rev. B 61, 1892 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 1892
-
-
Zhang, X.1
Zhang, Z.-Q.2
Li, L.-M.3
Jin, C.4
Zhang, D.5
Man, B.6
Cheng, B.7
-
21
-
-
0042512357
-
-
A. Khelief, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and L. Dobrzynski, J. Appl. Phys. 94, 1308 (2003).
-
(2003)
J. Appl. Phys.
, vol.94
, pp. 1308
-
-
Khelief, A.1
Deymier, P.A.2
Djafari-Rouhani, B.3
Vasseur, J.O.4
Dobrzynski, L.5
-
28
-
-
33144467787
-
-
D. Yu, Y. Liu, H. Zhao, G. Wang, and J. Qiu, Phys. Rev. B 73, 064301 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 064301
-
-
Yu, D.1
Liu, Y.2
Zhao, H.3
Wang, G.4
Qiu, J.5
-
29
-
-
33846034829
-
-
D. Yu, Y. Liu, H. Zhao, G. Wang, and J. Qiu, J. Appl. Phys. 100, 124901 (2006).
-
(2006)
J. Appl. Phys.
, vol.100
, pp. 124901
-
-
Yu, D.1
Liu, Y.2
Zhao, H.3
Wang, G.4
Qiu, J.5
-
35
-
-
34547604128
-
-
D. Bigoni, D. Capuani, P. Bonetti, and S. Colli, Comput. Methods Appl. Mech. Eng. 196, 4222 (2007).
-
(2007)
Comput. Methods Appl. Mech. Eng.
, vol.196
, pp. 4222
-
-
Bigoni, D.1
Capuani, D.2
Bonetti, P.3
Colli, S.4
-
38
-
-
63749114660
-
-
(Ref.) developed an asymptotic approach to longitudinal vibrations of an elastic beam (without prestress) containing defects at its boundary and found that the "effective boundary conditions" for the first-order asymptotic problem are either of Dirichlet type (the boundary of the thin body is clamped), Robin type (stress and displacement satisfy an elastic constitutive equation), or Neumann type (the boundary, strongly damaged, becomes traction-free).
-
V. V. Zalipaev (Ref.) developed an asymptotic approach to longitudinal vibrations of an elastic beam (without prestress) containing defects at its boundary and found that the "effective boundary conditions" for the first-order asymptotic problem are either of Dirichlet type (the boundary of the thin body is clamped), Robin type (stress and displacement satisfy an elastic constitutive equation), or Neumann type (the boundary, strongly damaged, becomes traction-free).
-
-
-
Zalipaev, V.V.1
-
40
-
-
33746119229
-
-
S. Nudehi, R. Mukherjee, and S. W. Shaw, J. Dyn. Syst., Meas., Control 128, 278 (2006).
-
(2006)
J. Dyn. Syst., Meas., Control
, vol.128
, pp. 278
-
-
Nudehi, S.1
Mukherjee, R.2
Shaw, S.W.3
-
41
-
-
0032022708
-
-
C. Gui, R. Legtenberg, H. A. C. Tilmans, J. H. J. Fluitman, and M. Elwenspoek, J. Microelectromech. Syst. 7, 122 (1998).
-
(1998)
J. Microelectromech. Syst.
, vol.7
, pp. 122
-
-
Gui, C.1
Legtenberg, R.2
Tilmans, H.A.C.3
Fluitman, J.H.J.4
Elwenspoek, M.5
-
42
-
-
7244239515
-
-
V. Kaajakari, T. Mattila, A. Oja, and H. Seppä, J. Microelectromech. Syst. 13, 715 (2004).
-
(2004)
J. Microelectromech. Syst.
, vol.13
, pp. 715
-
-
Kaajakari, V.1
Mattila, T.2
Oja, A.3
Seppä, H.4
-
43
-
-
63749086916
-
-
We refer to "effective negative mass effects" as the exponentially decaying propagation modes that can be found in elastic systems in the way addressed in Ref..
-
We refer to "effective negative mass effects" as the exponentially decaying propagation modes that can be found in elastic systems in the way addressed in Ref..
-
-
-
-
44
-
-
0003699033
-
-
(Addison-Wesley, Reading, MA), Vol..
-
R. Feynman, The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1965), Vol. 2.
-
(1965)
The Feynman Lectures on Physics
, vol.2
-
-
Feynman, R.1
-
47
-
-
63749104824
-
-
In the case of a homogeneous beam on an elastic foundation, all quantities introduced in Eqs. are constant along axis z. Therefore, the dispersion equation simplifies to P ω2 = (kr)4 + F- (kr)2 + S-, possessing the following features: (i) In the long-wavelength limit (kr→0), ω satisfies the cutoff limit P ω02 = S-. (ii) The frequency is monotonic for tensile (or null) prestress, F- 0, so that ωmin = ω0 in this case. (iii) For a compressive prestress, F- <0, the function of the above equation displays a minimum such that P ωmin2 = S- - F- 2 4 and, consequently, buckling (ωmin =0) occurs at F- buckl =-2S with kbuckl r= S- 14.
-
In the case of a homogeneous beam on an elastic foundation, all quantities introduced in Eqs. are constant along axis z. Therefore, the dispersion equation simplifies to P ω2 = (kr)4 + F- (kr)2 + S-, possessing the following features: (i) In the long-wavelength limit (kr→0), ω satisfies the cutoff limit P ω02 = S-. (ii) The frequency is monotonic for tensile (or null) prestress, F- 0, so that ωmin = ω0 in this case. (iii) For a compressive prestress, F- <0, the function of the above equation displays a minimum such that P ωmin2 = S - F- 2 4 and, consequently, buckling (ωmin =0) occurs at F- buckl =-2S with kbuckl r= S- 14.
-
-
-
-
48
-
-
63749095502
-
-
(x) =0.6272 x2 -1.04533 x3 +4.5948 x4 -9.9736 x5 +20.2948 x6 -33.0351 x7 +47.1063 x8 -40.7556 x9 +19.6 x10.
-
(x) =0.6272 x2 -1.04533 x3 +4.5948 x4 -9.9736 x5 +20.2948 x6 -33.0351 x7 +47.1063 x8 -40.7556 x9 +19.6 x10.
-
-
-
|