메뉴 건너뛰기




Volumn 4, Issue 10, 2008, Pages 2565-2579

Learning vector quantization neural networks for led wafer defect inspection

Author keywords

Automatic appearance inspection; LED defect inspection; Neural networks

Indexed keywords


EID: 63549110248     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (14)
  • 3
    • 34248569228 scopus 로고    scopus 로고
    • An adaptive level-selecting wavelet transform for texture defect detection
    • Y. F. Han and P. F. Shi, An adaptive level-selecting wavelet transform for texture defect detection, Image and Vision Computing, vol. 25, no. 8, pp. 1239-48, 2007.
    • (2007) Image and Vision Computing , vol.25 , Issue.8 , pp. 1239-1248
    • Han, Y.F.1    Shi, P.F.2
  • 6
    • 0025540140 scopus 로고
    • Improved versions of learning vector quantization
    • San Diego, CA
    • T. Kohonen, Improved versions of learning vector quantization, Proc. of the Int. Joint Conf. on Neural Networks, San Diego, CA, vol. 1, pp. 545-50, 1990.
    • (1990) Proc. of the Int. Joint Conf. on Neural Networks , vol.1 , pp. 545-550
    • Kohonen, T.1
  • 7
    • 9644259108 scopus 로고    scopus 로고
    • Tips for learning of evidence-based medicine: 3. Measures of observer variability (kappa statistic)
    • T. McGinn, P. C. Wyer, T. B. Newman, S. Keitz, R. Leipzig, G. Guyatt, Tips for learning of evidence-based medicine: 3. Measures of observer variability (kappa statistic), Canadian Medical Association Journal, vol. 121, no. 4, pp. 1369-73, 2004.
    • (2004) Canadian Medical Association Journal , vol.121 , Issue.4 , pp. 1369-1373
    • McGinn, T.1    Wyer, P.C.2    Newman, T.B.3    Keitz, S.4    Leipzig, R.5    Guyatt, G.6
  • 9
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979.
    • (1979) IEEE Trans. on Systems, Man and Cybernetics , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 10
    • 0032216601 scopus 로고    scopus 로고
    • Computer-aided diagnosis: A neural-network-based approach to lung nodule detection
    • M. G. Penedo, M. J. Carreria, A. Mosquera and D. Cabello, Computer-aided diagnosis: A neural-network-based approach to lung nodule detection, IEEE Trans. on Med. Imag., vol. 17, no. 6, pp. 872-880, 1998.
    • (1998) IEEE Trans. on Med. Imag , vol.17 , Issue.6 , pp. 872-880
    • Penedo, M.G.1    Carreria, M.J.2    Mosquera, A.3    Cabello, D.4
  • 11
    • 0036565004 scopus 로고    scopus 로고
    • Neural-network approach for semiconductor wafer post-sawing inspection
    • C. T. Su, T. Yang and C. M. Ke, Neural-network approach for semiconductor wafer post-sawing inspection, IEEE Trans. on Semi. Manuf., vol. 15, no. 2, pp. 260-266, 2002.
    • (2002) IEEE Trans. on Semi. Manuf , vol.15 , Issue.2 , pp. 260-266
    • Su, C.T.1    Yang, T.2    Ke, C.M.3
  • 12
    • 0034862446 scopus 로고    scopus 로고
    • K. Tobin. W., Jr., T. P. Karnowski and F. Lakhani, Integrated applications of inspection data in the semiconductor manufacturing environment, SPIE, Metrology-Based Control for Micro-Manufacturing, 4275, pp. 31-40, 2001.
    • K. Tobin. W., Jr., T. P. Karnowski and F. Lakhani, Integrated applications of inspection data in the semiconductor manufacturing environment, SPIE, Metrology-Based Control for Micro-Manufacturing, vol. 4275, pp. 31-40, 2001.
  • 13
    • 0032674546 scopus 로고    scopus 로고
    • The development of an automatic post-sawing inspection system using computer vision techniques
    • J. M. Zhang, R. M. Lin and M.-J. Wang, The development of an automatic post-sawing inspection system using computer vision techniques, Computers in Industry, vol. 30, pp. 51-60, 1999.
    • (1999) Computers in Industry , vol.30 , pp. 51-60
    • Zhang, J.M.1    Lin, R.M.2    Wang, M.-J.3
  • 14


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.