-
1
-
-
0001240707
-
Central limit theorems for stochastic processes under random entropy conditions
-
Alexander K.S. (1987). Central limit theorems for stochastic processes under random entropy conditions. Probab. Theory Relat. Fields 75: 351-378
-
(1987)
Probab. Theory Relat. Fields
, vol.75
, pp. 351-378
-
-
Alexander, K.S.1
-
3
-
-
0041857920
-
Nonparametric estimators which can be 'plugged-in'
-
Bickel J.P. and Ritov Y. (2003). Nonparametric estimators which can be 'plugged-in'. Ann. Statist. 31: 1033-1053
-
(2003)
Ann. Statist.
, vol.31
, pp. 1033-1053
-
-
Bickel, J.P.1
Ritov, Y.2
-
6
-
-
0002485879
-
Sample functions of the Gaussian process
-
Dudley R.M. (1973). Sample functions of the Gaussian process. Ann. Probab. 1: 66-103
-
(1973)
Ann. Probab.
, vol.1
, pp. 66-103
-
-
Dudley, R.M.1
-
7
-
-
0001151383
-
An extended Wichura theorem, definition of Donsker class, and weighted empirical distributions
-
Springer, New York
-
Dudley, R.M.: An extended Wichura theorem, definition of Donsker class, and weighted empirical distributions. Lecture Notes in Mathematics, vol. 1153, pp. 141-178. Springer, New York (1985)
-
(1985)
Lecture Notes in Mathematics
, vol.1153
, pp. 141-178
-
-
Dudley, R.M.1
-
10
-
-
33746227538
-
Concentration inequalities and asymptotic results for ratio type empirical processes
-
Giné E. and Koltchinskii V. (2006). Concentration inequalities and asymptotic results for ratio type empirical processes. Ann. Probab. 34: 1143-1216
-
(2006)
Ann. Probab.
, vol.34
, pp. 1143-1216
-
-
Giné, E.1
Koltchinskii, V.2
-
11
-
-
0000145024
-
Some limit theorems for empirical processes
-
Giné E. and Zinn J. (1984). Some limit theorems for empirical processes. Ann. Probab. 12: 929-989
-
(1984)
Ann. Probab.
, vol.12
, pp. 929-989
-
-
Giné, E.1
Zinn, J.2
-
12
-
-
0001678367
-
Empirical processes indexed by Lipschitz functions
-
Giné E. and Zinn J. (1986). Empirical processes indexed by Lipschitz functions. Ann. Probab. 14: 1329-1338
-
(1986)
Ann. Probab.
, vol.14
, pp. 1329-1338
-
-
Giné, E.1
Zinn, J.2
-
13
-
-
0012799913
-
Gaussian characterization of uniform Donsker classes
-
Giné E. and Zinn J. (1991). Gaussian characterization of uniform Donsker classes. Ann. Probab. 19: 758-782
-
(1991)
Ann. Probab.
, vol.19
, pp. 758-782
-
-
Giné, E.1
Zinn, J.2
-
16
-
-
34249095345
-
Relationships between Donsker classes and Sobolev spaces
-
Marcus D.J. (1985). Relationships between Donsker classes and Sobolev spaces. Z. Wahrsch. Verw. Gebiete 69: 323-330
-
(1985)
Z. Wahrsch. Verw. Gebiete
, vol.69
, pp. 323-330
-
-
Marcus, D.J.1
-
17
-
-
34248996136
-
Empirical and Gaussian processes on Besov classes
-
Giné, E., Koltchinskii, V., Li, W., Zinn, J. (eds.) High dimensional probability IV
-
Nickl, R.: Empirical and Gaussian processes on Besov classes. In: Giné, E., Koltchinskii, V., Li, W., Zinn, J. (eds.): High dimensional probability IV, IMS Lecture Notes, vol. 51, pp. 185-195 (2006a)
-
(2006)
IMS Lecture Notes
, vol.51
, pp. 185-195
-
-
Nickl, R.1
-
19
-
-
34248222659
-
Donsker-type theorems for nonparametric maximum likelihood estimators
-
Nickl R. (2007). Donsker-type theorems for nonparametric maximum likelihood estimators. Probab. Theory Relat. Fields 138: 411-449
-
(2007)
Probab. Theory Relat. Fields
, vol.138
, pp. 411-449
-
-
Nickl, R.1
-
20
-
-
34249036798
-
Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov- and Sobolev-type
-
Nickl R. and Pötscher B.M. (2007). Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov- and Sobolev-type. J. Theoret. Probab. 20: 177-199
-
(2007)
J. Theoret. Probab.
, vol.20
, pp. 177-199
-
-
Nickl, R.1
Pötscher, B.M.2
-
21
-
-
42149176416
-
Weak convergence of smoothed empirical processes. beyond Donsker classes
-
Birkhäuser Boston
-
Radulović D. and Wegkamp M. (2000). Weak convergence of smoothed empirical processes. Beyond Donsker classes. In: Giné, E., Mason, D.M. and Wellner, J.A. (eds) High dimensional probability II, Progr. Probab. 47, pp 89-105. Birkhäuser, Boston
-
(2000)
High Dimensional Probability II, Progr. Probab. 47
, pp. 89-105
-
-
Radulović, D.1
Wegkamp, M.2
Giné, E.3
Mason, D.M.4
Wellner, J.A.5
-
23
-
-
42149145966
-
Limit theorems for smoothed empirical processes
-
Birkhäuser Boston
-
Rost D. (2000). Limit theorems for smoothed empirical processes. In: Giné, E., Mason, D.M. and Wellner, J.A. (eds) High Dimensional Probability II, Progr. Probab. 47, pp 107-113. Birkhäuser, Boston
-
(2000)
High Dimensional Probability II, Progr. Probab. 47
, pp. 107-113
-
-
Rost, D.1
Giné, E.2
Mason, D.M.3
Wellner, J.A.4
-
28
-
-
0001742955
-
Weak convergence of smoothed empirical processes
-
Vaart A.W. (1994). Weak convergence of smoothed empirical processes. Scand. J. Statist. 21: 501-504
-
(1994)
Scand. J. Statist.
, vol.21
, pp. 501-504
-
-
Van Der Vaart, A.W.1
-
31
-
-
0001581756
-
Weak convergence of smoothed empirical processes
-
Yukich J.E. (1992). Weak convergence of smoothed empirical processes. Scand. J. Statist. 19: 271-279
-
(1992)
Scand. J. Statist.
, vol.19
, pp. 271-279
-
-
Yukich, J.E.1
-
32
-
-
0031211854
-
Functional central limit theorems for triangular arrays of function-indexed processes under uniformly integrable entropy conditions
-
Ziegler K. (1997). Functional central limit theorems for triangular arrays of function-indexed processes under uniformly integrable entropy conditions. J. Multivar. Anal. 62: 233-272
-
(1997)
J. Multivar. Anal.
, vol.62
, pp. 233-272
-
-
Ziegler, K.1
|