메뉴 건너뛰기




Volumn 32, Issue 1, 2004, Pages 85-100

Consistent maximum likelihood estimation of a unimodal density using shape restrictions

Author keywords

Convexity; Empirical processes; Monotonicity; Projections; Simulations

Indexed keywords


EID: 2442467849     PISSN: 03195724     EISSN: None     Source Type: Journal    
DOI: 10.2307/3316001     Document Type: Review
Times cited : (17)

References (16)
  • 1
    • 21344472936 scopus 로고    scopus 로고
    • Some problems on the estimation of unimodal densities
    • P. J. Bickel & J. Fan (1996). Some problems on the estimation of unimodal densities. Statistica Sinica, 6, 23-45.
    • (1996) Statistica Sinica , vol.6 , pp. 23-45
    • Bickel, P.J.1    Fan, J.2
  • 3
    • 0009361227 scopus 로고
    • A mixed primal-dual bases algorithm for regression under inequality constraints: Application to concave regression
    • D. A. S. Fraser & H. Massam (1989). A mixed primal-dual bases algorithm for regression under inequality constraints: Application to concave regression. Scandinavian Journal of Statistics, 16, 65-74.
    • (1989) Scandinavian Journal of Statistics , vol.16 , pp. 65-74
    • Fraser, D.A.S.1    Massam, H.2
  • 4
    • 84945603474 scopus 로고
    • On the theory of mortality measurement, II
    • U. Grenander (1956). On the theory of mortality measurement, II. Skandinavisk Aktuarietidskrift, 39, 125-153.
    • (1956) Skandinavisk Aktuarietidskrift , vol.39 , pp. 125-153
    • Grenander, U.1
  • 7
    • 0041731132 scopus 로고    scopus 로고
    • An extension of the mixed primal-dual bases algorithm to the case of more constraints than dimensions
    • M. C. Meyer (1999). An extension of the mixed primal-dual bases algorithm to the case of more constraints than dimensions. Journal of Statistical Planning and Inference, 81, 13-31.
    • (1999) Journal of Statistical Planning and Inference , vol.81 , pp. 13-31
    • Meyer, M.C.1
  • 8
    • 0035734026 scopus 로고    scopus 로고
    • An alternative unimodal density estimator with a consistent estimate of the mode
    • M. C. Meyer (2001). An alternative unimodal density estimator with a consistent estimate of the mode. Statistica Sinica, 11, 1159-1174.
    • (2001) Statistica Sinica , vol.11 , pp. 1159-1174
    • Meyer, M.C.1
  • 9
    • 0010639316 scopus 로고
    • On estimating a density which is measurable with respect to a σ-lattice
    • T. Robertson (1967). On estimating a density which is measurable with respect to a σ-lattice. The Annals of Mathematical Statistics, 38, 482-493.
    • (1967) The Annals of Mathematical Statistics , vol.38 , pp. 482-493
    • Robertson, T.1
  • 11
    • 0030585665 scopus 로고    scopus 로고
    • Adaptive smoothing for a penalized NPMLE of a non-increasing density
    • J. Sun & M. Woodroofe (1996). Adaptive smoothing for a penalized NPMLE of a non-increasing density. Journal of Statistical Planning and Inference, 52, 143-159.
    • (1996) Journal of Statistical Planning and Inference , vol.52 , pp. 143-159
    • Sun, J.1    Woodroofe, M.2
  • 12
    • 21144465429 scopus 로고
    • Hellinger-consistency of certain nonparametric maximum likelihood estimators
    • S. van de Geer (1993). Hellinger-consistency of certain nonparametric maximum likelihood estimators. The Annals of Statistics, 21, 14-44.
    • (1993) The Annals of Statistics , vol.21 , pp. 14-44
    • Van De Geer, S.1
  • 13
    • 0000477412 scopus 로고
    • Maximum likelihood estimation of a unimodal density function
    • E. J. Wegman (1970). Maximum likelihood estimation of a unimodal density function. The Annals of Mathematical Statistics, 41, 457-471.
    • (1970) The Annals of Mathematical Statistics , vol.41 , pp. 457-471
    • Wegman, E.J.1
  • 14
    • 0000067461 scopus 로고
    • A penalized maximum likelihood estimate of f(0+) when f is nonincreasing
    • M. Woodroofe & J. Sun (1993). A penalized maximum likelihood estimate of f(0+) when f is nonincreasing. Statistica Sinica, 3, 501-515.
    • (1993) Statistica Sinica , vol.3 , pp. 501-515
    • Woodroofe, M.1    Sun, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.