메뉴 건너뛰기




Volumn 8, Issue 3, 2009, Pages 263-274

Optimum method selection for resolution enhancement of hyperspectral imagery

Author keywords

Hyperspectral imagery; Learning based method; Resolution enhancement; Spectral mixture analysis

Indexed keywords

GENERIC APPROACHES; HIGH QUALITIES; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGERY; LEARNING-BASED METHOD; MULTI SOURCES; MULTIPLE FACTORS; OPTIMUM METHODS; RESOLUTION ENHANCEMENT; SPECTRAL MIXTURE ANALYSIS; SUPER-RESOLUTION ALGORITHMS; TRAINING DATUM;

EID: 62749158379     PISSN: 18125638     EISSN: 18125646     Source Type: Journal    
DOI: 10.3923/itj.2009.263.274     Document Type: Article
Times cited : (14)

References (68)
  • 1
    • 0001395470 scopus 로고
    • Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site
    • Adams, J.B., M.O. Smith and P.E. Johnson, 1986. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. J. Geophys. Res., 91: 8098-8112.
    • (1986) J. Geophys. Res , vol.91 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2    Johnson, P.E.3
  • 3
    • 4544304211 scopus 로고    scopus 로고
    • High-resolution images from compressed lowresolution video: Motion estimation and observable pixels
    • Alvarez, L.D., J. Mateos, R. Molina and A.K. Katsaggelos, 2004. High-resolution images from compressed lowresolution video: Motion estimation and observable pixels. Int. J. Image. Syst. Technol., 14: 58-66.
    • (2004) Int. J. Image. Syst. Technol , vol.14 , pp. 58-66
    • Alvarez, L.D.1    Mateos, J.2    Molina, R.3    Katsaggelos, A.K.4
  • 4
    • 0031106029 scopus 로고    scopus 로고
    • Mapping sub-pixel proportional land cover with AVHRR imagery
    • Atkinson, P.M., M.E.J. Cutler and H. Lewis, 1997. Mapping sub-pixel proportional land cover with AVHRR imagery. Int. J. Remote Sens., 18: 917-935.
    • (1997) Int. J. Remote Sens , vol.18 , pp. 917-935
    • Atkinson, P.M.1    Cutler, M.E.J.2    Lewis, H.3
  • 7
    • 0024818882 scopus 로고
    • Inversion of imaging spectrometry data using singular value decomposition
    • July 10-14, International Academic Press, pp
    • Boardman, J.W., 1989. Inversion of imaging spectrometry data using singular value decomposition. Proceeding of the IEEE Symposium of Geoscience and Remote Sensing, July 10-14, International Academic Press, pp: 2069-2072.
    • (1989) Proceeding of the IEEE Symposium of Geoscience and Remote Sensing , pp. 2069-2072
    • Boardman, J.W.1
  • 9
    • 0033578380 scopus 로고    scopus 로고
    • Support vector machines for optimal classification and spectral unmixing
    • Brown, M., S.R. Gunn and H.G. Lewis, 1999. Support vector machines for optimal classification and spectral unmixing. Ecol. Model., 120: 167-179.
    • (1999) Ecol. Model , vol.120 , pp. 167-179
    • Brown, M.1    Gunn, S.R.2    Lewis, H.G.3
  • 12
    • 0031166411 scopus 로고    scopus 로고
    • Fast motion vector estimation using multiresolution-spatiotemporal correlation
    • Chalidabhongse, J. and C.C.J. Kuo, 1997. Fast motion vector estimation using multiresolution-spatiotemporal correlation. IEEE Trans. Circuits Syst. VideoTechnol., 7: 477-488.
    • (1997) IEEE Trans. Circuits Syst. VideoTechnol , vol.7 , pp. 477-488
    • Chalidabhongse, J.1    Kuo, C.C.J.2
  • 13
    • 0033719885 scopus 로고    scopus 로고
    • Constrained subpixel target detection for remotely sensed imagery
    • Chang, C. and CD. Heinz, 2000. Constrained subpixel target detection for remotely sensed imagery. IEEE Trans. Geosci. Remote Sens., 38: 1144-1159.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , pp. 1144-1159
    • Chang, C.1    Heinz, C.D.2
  • 15
    • 31344465213 scopus 로고    scopus 로고
    • Weighted abundanceconstrained linear spectral mixture analysis
    • Chang, C. and B. Ji, 2006. Weighted abundanceconstrained linear spectral mixture analysis. IEEE Trans. Geosci. Remote Sens., 44: 378-388.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 378-388
    • Chang, C.1    Ji, B.2
  • 16
    • 4544314344 scopus 로고    scopus 로고
    • Superresolution approach to overcome physical limitations of imaging sensors. An overview
    • Choi, E.C., J.S. Choi and M.G. Kang, 2004. Superresolution approach to overcome physical limitations of imaging sensors. An overview. Int. J. Image. Syst. Technol., 14: 36-46.
    • (2004) Int. J. Image. Syst. Technol , vol.14 , pp. 36-46
    • Choi, E.C.1    Choi, J.S.2    Kang, M.G.3
  • 17
    • 18844435710 scopus 로고    scopus 로고
    • Fusion of multispectral and panchromatic satellite images using the curvelet transform
    • Choi, M.J., R.Y. Kim, M.R. Nam and H.O. Kim, 2005. Fusion of multispectral and panchromatic satellite images using the curvelet transform. IEEE Geosci. Remote Sens. Lett, 2: 136-140.
    • (2005) IEEE Geosci. Remote Sens. Lett , vol.2 , pp. 136-140
    • Choi, M.J.1    Kim, R.Y.2    Nam, M.R.3    Kim, H.O.4
  • 18
    • 4744347712 scopus 로고    scopus 로고
    • Application of the stochastic mixing model to hyperspectral resolution enhancement
    • Eismann, M.T. and R.C. Hardie, 2004. Application of the stochastic mixing model to hyperspectral resolution enhancement. IEEE Trans. Geosci. Remote Sens., 42: 1924-1933.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1924-1933
    • Eismann, M.T.1    Hardie, R.C.2
  • 19
    • 14644411721 scopus 로고    scopus 로고
    • Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions
    • Eismann, M.T. and R.C. Hardie, 2005. Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions. IEEE Trans. Geosci. Remote Sens., 43: 455-465.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , pp. 455-465
    • Eismann, M.T.1    Hardie, R.C.2
  • 21
    • 0032505168 scopus 로고    scopus 로고
    • Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution
    • Foody, G.M., 1998. Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution Int. J. Remote Sens., 19: 2593-2599.
    • (1998) Int. J. Remote Sens , vol.19 , pp. 2593-2599
    • Foody, G.M.1
  • 23
    • 0030292138 scopus 로고    scopus 로고
    • Linear spectral mixture modeling to estimate vegetation amount from optical spectral data
    • Garcia-Haro, F.J., M.A. Gilabert and J. Melia, 1996. Linear spectral mixture modeling to estimate vegetation amount from optical spectral data. Int. J. Remote Sens., 17: 3373-3400.
    • (1996) Int. J. Remote Sens , vol.17 , pp. 3373-3400
    • Garcia-Haro, F.J.1    Gilabert, M.A.2    Melia, J.3
  • 24
    • 0024895551 scopus 로고
    • Quantitative determination of imaging spectrometer specifications based on spectral mixing models. Proceedings of the Geoscience and Remote Sensing Symposium, International of 12th Canadian Symposium on Remote Sensing, Jul. 10-14
    • London, pp
    • Goetz, A.F.H. and J.W. Boardman, 1989. Quantitative determination of imaging spectrometer specifications based on spectral mixing models. Proceedings of the Geoscience and Remote Sensing Symposium, International of 12th Canadian Symposium on Remote Sensing, Jul. 10-14, IEEE Xplore London, pp: 1036-1039.
    • (1989) IEEE Xplore , pp. 1036-1039
    • Goetz, A.F.H.1    Boardman, J.W.2
  • 25
    • 0003626435 scopus 로고    scopus 로고
    • Digital Image Processing
    • Printice Hall, Beijing
    • Gonzalez, R.F. and R.E. Woods, 2003. Digital Image Processing. 2ndEdn., Printice Hall, Beijing.
    • (2003) 2ndEdn
    • Gonzalez, R.F.1    Woods, R.E.2
  • 26
    • 1242331307 scopus 로고    scopus 로고
    • The effect of solar illumination angle and sensor view angle on observed patterns of spatial structure in tallgrass prairie
    • Goodrn, D.G., J. Gao and G.M. Henebry, 2004. The effect of solar illumination angle and sensor view angle on observed patterns of spatial structure in tallgrass prairie. IEEE Trans. Geosci. Remote Sens., 42: 154-165.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 154-165
    • Goodrn, D.G.1    Gao, J.2    Henebry, G.M.3
  • 27
    • 0031988778 scopus 로고    scopus 로고
    • Application of spectral mixture analysis and image fusion techniques for image sharpening
    • Gross, H.N. and J.R. Schott, 1998. Application of spectral mixture analysis and image fusion techniques for image sharpening. Remote Sens. Environ., 63: 85-94.
    • (1998) Remote Sens. Environ , vol.63 , pp. 85-94
    • Gross, H.N.1    Schott, J.R.2
  • 28
    • 53349129867 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for resolution enhancement in hyperspectral images
    • Gu, Y., Y. Zhang and J. Zhang, 2008. Integration of spatial-spectral information for resolution enhancement in hyperspectral images. IEEE Trans. Geosci. Remote Sens., 46: 1347-1358.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , pp. 1347-1358
    • Gu, Y.1    Zhang, Y.2    Zhang, J.3
  • 29
    • 0034546934 scopus 로고    scopus 로고
    • Support vector machines for classification of hyperspectral data. Proceeding of the International Geoscience and Remote Sensing Symposium, Jul. 24-28
    • London, pp
    • Gualtieri, J.A. and S. Chettii, 2000. Support vector machines for classification of hyperspectral data. Proceeding of the International Geoscience and Remote Sensing Symposium, Jul. 24-28, IEEE Xplore London, pp: 813-815.
    • (2000) IEEE Xplore , pp. 813-815
    • Gualtieri, J.A.1    Chettii, S.2
  • 31
    • 4344583032 scopus 로고    scopus 로고
    • MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor
    • Hardie, R.C. and M.T. Eismann, 2004. MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor. IEEE Trans. Image Process., 13: 1174-1184.
    • (2004) IEEE Trans. Image Process , vol.13 , pp. 1174-1184
    • Hardie, R.C.1    Eismann, M.T.2
  • 32
    • 0033225639 scopus 로고    scopus 로고
    • Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions
    • Healey, G. andD. Slater, 1999. Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions. IEEE Trans. Geosci. Remote Sens., 37: 2706-2717.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , pp. 2706-2717
    • Healey1    andD, G.2    Slater3
  • 33
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Heinz, D. and C.I. Chang, 2001. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens., 39: 529-545.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , pp. 529-545
    • Heinz, D.1    Chang, C.I.2
  • 34
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexitybased hyperspectral unmixing
    • Jia, S. and Y. Qian, 2007. Spectral and spatial complexitybased hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens., 45: 3867-3879.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 35
    • 33748291649 scopus 로고    scopus 로고
    • A modelbased approach to multiresolution fusion in remotely sensed images
    • Joshi, M.V., L. Bruzzone and S. Chaudhuri, 2006. A modelbased approach to multiresolution fusion in remotely sensed images. IEEE Trans. Geosci. Remote Sens., 44: 2549-2562.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 2549-2562
    • Joshi, M.V.1    Bruzzone, L.2    Chaudhuri, S.3
  • 36
  • 37
    • 3242731020 scopus 로고    scopus 로고
    • Super-resolution of the undersampled and subpixel shifted image sequence by a neural network
    • Lu, Y., M. Inamura and M. Del Carmen-Valdes, 2004. Super-resolution of the undersampled and subpixel shifted image sequence by a neural network. Int. J. Image. Syst. Technol, 14: 8-15.
    • (2004) Int. J. Image. Syst. Technol , vol.14 , pp. 8-15
    • Lu, Y.1    Inamura, M.2    Del Carmen-Valdes, M.3
  • 38
    • 0033685691 scopus 로고    scopus 로고
    • Comparative analysis of hyperspectral adaptive matched filter detectors
    • Apr. 24-26, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, pp
    • Manolakis, D., G. Shaw and N. Keshava, 2000. Comparative analysis of hyperspectral adaptive matched filter detectors. Proceeding of the SPIE, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Apr. 24-26, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, pp: 2-17.
    • (2000) Proceeding of the SPIE, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery , vol.6 , pp. 2-17
    • Manolakis, D.1    Shaw, G.2    Keshava, N.3
  • 39
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Mag a
    • Manolakis, D. and G. Shaw, 2002. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag a., 19: 29-43.
    • (2002) IEEE Signal Process , vol.19 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 40
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • Manolakis, D., D. Marden and G.A. Shaw, 2003. Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J., 14: 79-116.
    • (2003) Lincoln Lab. J , vol.14 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 41
    • 0034498688 scopus 로고    scopus 로고
    • Reconstruction of irregularly sampled discrete-time bandlimited signals with unknown sampling locations
    • Marziliano, P. and M. Vetterli, 2000. Reconstruction of irregularly sampled discrete-time bandlimited signals with unknown sampling locations. IEEE Trans. Signal Proc, 48:3462-3471.
    • (2000) IEEE Trans. Signal Proc , vol.48 , pp. 3462-3471
    • Marziliano, P.1    Vetterli, M.2
  • 42
    • 34247508224 scopus 로고    scopus 로고
    • Super-resolution of remotely sensed images with variable-pixel linear reconstruction
    • Meria, M.T. and J. Nunez, 2007. Super-resolution of remotely sensed images with variable-pixel linear reconstruction. IEEE Trans. Geosci. Remote Sens., 45: 1446-1457.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , pp. 1446-1457
    • Meria, M.T.1    Nunez, J.2
  • 43
    • 2542635716 scopus 로고    scopus 로고
    • Sub-pixel mapping and sub-pixel sharpening using neural network predicted wavelet coefficients
    • Mertens, K.C., L.P.C. Verbeke, T. Westra and R.R. de Wulf, 2004. Sub-pixel mapping and sub-pixel sharpening using neural network predicted wavelet coefficients. Remote Sens. Environ, 91: 225-236.
    • (2004) Remote Sens. Environ , vol.91 , pp. 225-236
    • Mertens, K.C.1    Verbeke, L.P.C.2    Westra, T.3    de Wulf, R.R.4
  • 44
    • 56749130585 scopus 로고    scopus 로고
    • Mianji, F.A, Y. Zhang, H.S. Sulehria, A. Babakhani and M.R. Kardan, 2008a. Superresolution challenges in hyperspectral imagery. Inform. Technol. J., 7: 1030-1036.
    • Mianji, F.A, Y. Zhang, H.S. Sulehria, A. Babakhani and M.R. Kardan, 2008a. Superresolution challenges in hyperspectral imagery. Inform. Technol. J., 7: 1030-1036.
  • 46
    • 0027334035 scopus 로고
    • Resolution enhancement of multispectral image data to improve classification accuracy
    • Munechika, C.K., J.S. Warnick, C. Salvaggio and J.R. Schott, 1993. Resolution enhancement of multispectral image data to improve classification accuracy. Photogram. Eng. Remote Sens., 59: 67-72.
    • (1993) Photogram. Eng. Remote Sens , vol.59 , pp. 67-72
    • Munechika, C.K.1    Warnick, J.S.2    Salvaggio, C.3    Schott, J.R.4
  • 47
    • 33244458725 scopus 로고    scopus 로고
    • Superresolution mapping using a Hopfield neural network with fused images
    • Nguyen, M.Q., P.M. Atkinson H.G. Lewis, 2006. Superresolution mapping using a Hopfield neural network with fused images. IEEE Trans. Geosci. Remote Sens., 44: 736-749.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 736-749
    • Nguyen, M.Q.1    Atkinson, P.M.2    Lewis, H.G.3
  • 48
    • 0030243108 scopus 로고    scopus 로고
    • Enhancement of low spatial resolution image based on high resolution bands
    • Nishii, R., S. Kusanobu and S. Tanaka, 1996. Enhancement of low spatial resolution image based on high resolution bands. IEEE Trans. Geosci. Remote Sens., 34: 1151-1158.
    • (1996) IEEE Trans. Geosci. Remote Sens , vol.34 , pp. 1151-1158
    • Nishii, R.1    Kusanobu, S.2    Tanaka, S.3
  • 50
    • 0036681379 scopus 로고    scopus 로고
    • Using simulated annealing to obtain optimal linear end-member mixtures of hyperspectral data
    • Perm, B.S., 2002. Using simulated annealing to obtain optimal linear end-member mixtures of hyperspectral data. Comput. Geosci., 28: 809-817.
    • (2002) Comput. Geosci , vol.28 , pp. 809-817
    • Perm, B.S.1
  • 51
    • 0036762725 scopus 로고    scopus 로고
    • Spatialspectral endmember extraction by multidimensional morphological operations
    • Plaza, A., P. Martinez, R. Perez and J. Plaza, 2002. Spatialspectral endmember extraction by multidimensional morphological operations. IEEE Trans. Geosci. Remote Sens., 40: 2025-2041.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 52
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Plaza, A., P. Martinez, R. Perez and J. Plaza, 2004. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans. Geosci. Remote Sens., 42: 650-663.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 53
    • 0023163642 scopus 로고
    • Combining panchromatic and multispectral imagery dual resolution satellite instruments
    • Price, J.C., 1987. Combining panchromatic and multispectral imagery dual resolution satellite instruments. Remote Sens. Environ., 21: 119-128.
    • (1987) Remote Sens. Environ , vol.21 , pp. 119-128
    • Price, J.C.1
  • 54
    • 15944406786 scopus 로고    scopus 로고
    • Optimal linear unmixing for hyperspectral image analysis
    • Sept. 20-24, IEEE Computer Society, pp
    • Qian, D., 2004. Optimal linear unmixing for hyperspectral image analysis. Proceedings of the Geoscience and Remote Sensing Symposium, Sept. 20-24, IEEE Computer Society, pp: 3219-3221.
    • (2004) Proceedings of the Geoscience and Remote Sensing Symposium , pp. 3219-3221
    • Qian, D.1
  • 55
    • 62749184980 scopus 로고    scopus 로고
    • Enhancing spatial resolution for exploitation in hyperspectral imagery. Proceedings of the 31st Applied Imagery Pattern Recognition Workshop, Oct. 16-18
    • London, pp
    • Rhody, H.E., 2002. Enhancing spatial resolution for exploitation in hyperspectral imagery. Proceedings of the 31st Applied Imagery Pattern Recognition Workshop, Oct. 16-18, IEEE Xplore London, pp: 19-28.
    • (2002) IEEE Xplore , pp. 19-28
    • Rhody, H.E.1
  • 56
    • 0034161353 scopus 로고    scopus 로고
    • Evaluation of two applications of spectral mixing models to image fusion
    • Robinson, G., H.N. Gross and J.R. Schott, 2000. Evaluation of two applications of spectral mixing models to image fusion. Remote Sens. Environ., 71: 272-281.
    • (2000) Remote Sens. Environ , vol.71 , pp. 272-281
    • Robinson, G.1    Gross, H.N.2    Schott, J.R.3
  • 57
    • 33646876593 scopus 로고    scopus 로고
    • Statistical performance analysis of super-resolution
    • Robinson, D. and P. Milanfar, 2006. Statistical performance analysis of super-resolution. IEEE Trans. Image Proc, 15: 1413-1428.
    • (2006) IEEE Trans. Image Proc , vol.15 , pp. 1413-1428
    • Robinson, D.1    Milanfar, P.2
  • 58
    • 0033608904 scopus 로고    scopus 로고
    • The potential of hyperspectral bidirectional reflectance distribution function data for grass canopy characterization
    • Sandmeier, S.R., E.M. Middleton, DW. Deering and W. Qin, 1999. The potential of hyperspectral bidirectional reflectance distribution function data for grass canopy characterization. J. Geophys. Res., 104: 9547-9560.
    • (1999) J. Geophys. Res , vol.104 , pp. 9547-9560
    • Sandmeier, S.R.1    Middleton, E.M.2    Deering, D.W.3    Qin, W.4
  • 59
    • 40649098798 scopus 로고    scopus 로고
    • Remote Sensing: Models and Methods for Image Processing
    • 2nd Edn, San Diego, ISBN: 0126289816
    • Schowengerdt, R.A., 1997. Remote Sensing: Models and Methods for Image Processing. 2nd Edn, CA Academic, San Diego, ISBN: 0126289816.
    • (1997) CA Academic
    • Schowengerdt, R.A.1
  • 61
    • 34248578268 scopus 로고    scopus 로고
    • A fast algorithm for reconstruction-based superresolution and evaluation of its accuracy
    • Tanaka, M. and M. Okutomi, 2007. A fast algorithm for reconstruction-based superresolution and evaluation of its accuracy. Syst. Comput. Jap., 38: 44-52.
    • (2007) Syst. Comput. Jap , vol.38 , pp. 44-52
    • Tanaka, M.1    Okutomi, M.2
  • 62
    • 0035304252 scopus 로고    scopus 로고
    • Super-resolution target identification from remotely sensed images using a Hopfield neural network
    • Tatem, A. J., H.G. Lewis, P.M. Atkinson and M.S. Nixon, 2001. Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Trans. Geosci. Remote Sens., 39:781-796.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , pp. 781-796
    • Tatem, A.J.1    Lewis, H.G.2    Atkinson, P.M.3    Nixon, M.S.4
  • 63
    • 4544384677 scopus 로고    scopus 로고
    • How to take advantage of aliasing in bandlimited signals. Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, May 17-21
    • London, pp
    • Vandewalle, P., L. Sbaiz, J. Vandewalle and M. Vetterli, 2004.How to take advantage of aliasing in bandlimited signals. Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, May 17-21, IEEE Xplore London, pp: 948-951.
    • (2004) IEEE Xplore , pp. 948-951
    • Vandewalle, P.1    Sbaiz, L.2    Vandewalle, J.3    Vetterli, M.4
  • 65
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • Wang, J. and C.I. Chang, 2006. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens., 44: 2601-2616.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 2601-2616
    • Wang, J.1    Chang, C.I.2
  • 66
    • 0036907381 scopus 로고    scopus 로고
    • Physics-based resolution enhancement of hyperspectral data
    • Winter, M.E. and E.M. Winter, 2002a. Physics-based resolution enhancement of hyperspectral data. Proc. SPIE., 4725: 580-587.
    • (2002) Proc. SPIE , vol.4725 , pp. 580-587
    • Winter, M.E.1    Winter, E.M.2
  • 67
    • 4544330190 scopus 로고    scopus 로고
    • Resolution enhancement of hyperspectral data. Proceeding of the Aerospace Conference, Mar. 9-16
    • London, pp
    • Winter, M.E. and E.M. Winter, 2002b. Resolution enhancement of hyperspectral data. Proceeding of the Aerospace Conference, Mar. 9-16, IEEE Xplore London, pp: 1523-1529.
    • (2002) IEEE Xplore , pp. 1523-1529
    • Winter, M.E.1    Winter, E.M.2
  • 68
    • 19944366982 scopus 로고    scopus 로고
    • Fast MAP-based multiframe super-resolution image reconstruction
    • Zhanga, D., H. Lib and M. Du, 2005. Fast MAP-based multiframe super-resolution image reconstruction. Image Vision Comput., 23: 671-679.
    • (2005) Image Vision Comput , vol.23 , pp. 671-679
    • Zhanga, D.1    Lib, H.2    Du, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.