메뉴 건너뛰기




Volumn 8, Issue 1, 2009, Pages

Two-stage model-based clustering for liquid chromatography mass spectrometry data analysis

Author keywords

Clustering; Gaussian mixtures; Mass spectrometry; Peak alignment

Indexed keywords

ALGORITHM; ARTICLE; CLUSTER ANALYSIS; COLORECTAL TUMOR; HUMAN; LIQUID CHROMATOGRAPHY; MASS SPECTROMETRY; METABOLISM; STATISTICAL MODEL; STATISTICS; TIME;

EID: 62449120590     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.2202/1544-6115.1308     Document Type: Article
Times cited : (5)

References (41)
  • 1
    • 0037435030 scopus 로고    scopus 로고
    • Mass-spectrometry based proteomics
    • Aebersold, R. and Mann, M. (2003). Mass-spectrometry based proteomics. Nature, 422(6928):198-207.
    • (2003) Nature , vol.422 , Issue.6928 , pp. 198-207
    • Aebersold, R.1    Mann, M.2
  • 2
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57:289-300.
    • (1995) Journal of the Royal Statistical Society , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine learning, 26(2):123-140.
    • (1996) Machine learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine learning, 45:5-32.
    • (2001) Machine learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
  • 7
    • 62549161848 scopus 로고
    • Gaussian parsimonious clustering models
    • Technical Report 2028, INRIA
    • Celeux, G. and Govaert, G. (1993). Gaussian parsimonious clustering models. Technical Report 2028, INRIA.
    • (1993)
    • Celeux, G.1    Govaert, G.2
  • 9
    • 85053520810 scopus 로고
    • Local regression models
    • Chambers, J. M. and Hastie, T. J, editors, Pacific Grove: Wadsworth
    • Cleveland, W. S., Grosse, E., and Shyu, W. M. (1992). Local regression models. In Chambers, J. M. and Hastie, T. J., editors, Statistical Models in S, pages 309-376, Pacific Grove: Wadsworth.
    • (1992) Statistical Models in S , pp. 309-376
    • Cleveland, W.S.1    Grosse, E.2    Shyu, W.M.3
  • 12
    • 34547765953 scopus 로고    scopus 로고
    • On consensus biomarker selection
    • Dutkowski, J. and Gambin, A. (2007). On consensus biomarker selection. BMC Bioinformatics, 8(S5).
    • (2007) BMC Bioinformatics , vol.8 , Issue.S5
    • Dutkowski, J.1    Gambin, A.2
  • 13
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Simoudis, E, Han, J, and Fayyad, U, editors, AAAI Press
    • Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Simoudis, E., Han, J., and Fayyad, U., editors, Second International Conference on Knowledge Discovery and Data Mining, pages 226-231. AAAI Press.
    • (1996) Second International Conference on Knowledge Discovery and Data Mining , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 14
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? which clustering method? answers via model-based cluster analysis
    • Fraley, C. and Raftery, A. E. (1998). How many clusters? which clustering method? answers via model-based cluster analysis. The Computer Journal, 41(8):578-588.
    • (1998) The Computer Journal , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 15
    • 0742265347 scopus 로고    scopus 로고
    • MCLUST: Software for model-based clustering, density estimation and discriminant
    • Technical Report 415R, University of Washington, Department of Statistics
    • Fraley, C. and Raftery, A. E. (2002). MCLUST: Software for model-based clustering, density estimation and discriminant. Technical Report 415R, University of Washington, Department of Statistics.
    • (2002)
    • Fraley, C.1    Raftery, A.E.2
  • 16
    • 36849029089 scopus 로고    scopus 로고
    • Bayesian regularization for normal mixture estimation and model-based clustering
    • Fraley, C. and Raftery, A. E. (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification, 24:155-181.
    • (2007) Journal of Classification , vol.24 , pp. 155-181
    • Fraley, C.1    Raftery, A.E.2
  • 18
    • 0032083561 scopus 로고    scopus 로고
    • Multidimensional access methods
    • Gaede, V. and Gunther, O. (1998). Multidimensional access methods. ACM Computing Surveys, 30(2):170-231.
    • (1998) ACM Computing Surveys , vol.30 , Issue.2 , pp. 170-231
    • Gaede, V.1    Gunther, O.2
  • 22
    • 0000554045 scopus 로고
    • On the choice of a model to fit data from an exponential family
    • Haughton, D. M. A. (1988). On the choice of a model to fit data from an exponential family. The Annals of Statistics, 16:342-355.
    • (1988) The Annals of Statistics , vol.16 , pp. 342-355
    • Haughton, D.M.A.1
  • 23
    • 33750743755 scopus 로고    scopus 로고
    • Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline
    • Jaitly, N., Monroe, M. E., Petyuk, V. A., Clauss, T. R. W., Adkins, J. N., and Smith, R. D. (2006). Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Analytical Chemistry, 78(21):7397-7409.
    • (2006) Analytical Chemistry , vol.78 , Issue.21 , pp. 7397-7409
    • Jaitly, N.1    Monroe, M.E.2    Petyuk, V.A.3    Clauss, T.R.W.4    Adkins, J.N.5    Smith, R.D.6
  • 24
    • 18644382957 scopus 로고    scopus 로고
    • Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue
    • Lichtinghagen, R., Musholt, P., Lein, M., Rmer, A., Rudolph, B., Kristiansen, G., Hauptmann, S., Schnorr, D., Loening, S., and Jung, K. (2002). Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. European Urology, 42:398-406.
    • (2002) European Urology , vol.42 , pp. 398-406
    • Lichtinghagen, R.1    Musholt, P.2    Lein, M.3    Rmer, A.4    Rudolph, B.5    Kristiansen, G.6    Hauptmann, S.7    Schnorr, D.8    Loening, S.9    Jung, K.10
  • 25
    • 84898983966 scopus 로고    scopus 로고
    • Listgarten, J., Neal, R. M., Roweis, S. T., and Emili, A. (2005). Multiple alignment of continuous time series. In et al., L. K. S., editor, Advances in Neural Information Processing Systems, 17, pages 817-824. MIT Press.
    • Listgarten, J., Neal, R. M., Roweis, S. T., and Emili, A. (2005). Multiple alignment of continuous time series. In et al., L. K. S., editor, Advances in Neural Information Processing Systems, volume 17, pages 817-824. MIT Press.
  • 27
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations. In of California Press, U., editor
    • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In of California Press, U., editor, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281-297.
    • (1967) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 28
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • Bocca, J, Jarke, M, and Zaniolo, C, editors, Los Altos, CA 94022, USA. Morgan Kaufmann Publishers
    • Ng, R. T. and Han, J. (1994). Efficient and effective clustering methods for spatial data mining. In Bocca, J., Jarke, M., and Zaniolo, C., editors, 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago, Chile proceedings, pages 144-155, Los Altos, CA 94022, USA. Morgan Kaufmann Publishers.
    • (1994) 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago, Chile proceedings , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 29
    • 22944474285 scopus 로고    scopus 로고
    • On the slow convergence of EM and VBEM in low-noise linear models
    • Petersen, K. B. (2005). On the slow convergence of EM and VBEM in low-noise linear models. Neural Computation, 17:1921-1926.
    • (2005) Neural Computation , vol.17 , pp. 1921-1926
    • Petersen, K.B.1
  • 30
    • 0035628554 scopus 로고    scopus 로고
    • Hierarchical model-based clustering for large datasets
    • Posse, C. (2001). Hierarchical model-based clustering for large datasets. Journal of Computational and Graphical Statistics, 10(3):464-486.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , Issue.3 , pp. 464-486
    • Posse, C.1
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6:461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 32444446805 scopus 로고    scopus 로고
    • XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
    • Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R., and Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3):779-787.
    • (2006) Analytical Chemistry , vol.78 , Issue.3 , pp. 779-787
    • Smith, C.A.1    Want, E.J.2    O'Maille, G.3    Abagyan, R.4    Siuzdak, G.5
  • 34
    • 0042424602 scopus 로고    scopus 로고
    • Statistical significance for genomewide studies
    • Storey, J. and Tibshirani, R. (2003). Statistical significance for genomewide studies. PNAS, 100(16):9440-9445.
    • (2003) PNAS , vol.100 , Issue.16 , pp. 9440-9445
    • Storey, J.1    Tibshirani, R.2
  • 35
    • 10244279272 scopus 로고    scopus 로고
    • Sample classification from protein mass spectrometry, by "peak probability contrasts
    • Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., and Le, Q.-T. (2004). Sample classification from protein mass spectrometry, by "peak probability contrasts". Bioinformatics, 20(17):3034-3044.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3034-3044
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Soltys, S.4    Shi, G.5    Koong, A.6    Le, Q.-T.7
  • 38
    • 84944178665 scopus 로고
    • Hierarchical groupings to optimize an objective function
    • Ward, J. H. (1963). Hierarchical groupings to optimize an objective function. Journal of the American Statistical Association, 58:234-244.
    • (1963) Journal of the American Statistical Association , vol.58 , pp. 234-244
    • Ward, J.H.1
  • 39
    • 18744372755 scopus 로고    scopus 로고
    • SpecAlign. processing and alignment of mass spectra datasets
    • Wong, J. W. H., Cagney, G., and Cartwright, H. M. (2005). SpecAlign. processing and alignment of mass spectra datasets. Bioinformatics, 21(9):2088-2090.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 2088-2090
    • Wong, J.W.H.1    Cagney, G.2    Cartwright, H.M.3
  • 40
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D., Williams, K., and Zhao, H. (2003). Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics, 19(13):1636-1643.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3    McMurray, W.4    Mor, G.5    Stone, K.6    Ward, D.7    Williams, K.8    Zhao, H.9
  • 41
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E., and Ruzzo, W. L. (2001). Model-based clustering and data transformations for gene expression data. Bioinformatics, 17(10):977-987.
    • (2001) Bioinformatics , vol.17 , Issue.10 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.