메뉴 건너뛰기




Volumn 31, Issue 2, 2009, Pages 228-244

Natural image statistics and low-complexity feature selection

Author keywords

Feature discrimination versus dependence; Feature extraction and construction; Image databases; Information theory; Low complexity; Natural image statistics; Object recognition; Perceptual reasoning; Texture

Indexed keywords

FEATURE DISCRIMINATION VERSUS DEPENDENCE; IMAGE DATABASES; LOW COMPLEXITY; NATURAL IMAGE STATISTICS; PERCEPTUAL REASONING;

EID: 62249219891     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2008.77     Document Type: Article
Times cited : (39)

References (80)
  • 2
    • 0024700097 scopus 로고
    • A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
    • July
    • S. Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, July 1989.
    • (1989) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 3
    • 3042609133 scopus 로고
    • The Statistics of Natural Images
    • D. Ruderman, "The Statistics of Natural Images," Network: Computation in Neural Systems, vol. 5, no. 4, pp. 517-548, 1994.
    • (1994) Network: Computation in Neural Systems , vol.5 , Issue.4 , pp. 517-548
    • Ruderman, D.1
  • 4
    • 0023492118 scopus 로고
    • Relations between the Statistics of Natural Images and the Response Properties of Cortical Cells
    • D. Field, "Relations between the Statistics of Natural Images and the Response Properties of Cortical Cells," J. Optical Soc. Am. A, vol. 4, no. 12, pp. 2379-2394, 1987.
    • (1987) J. Optical Soc. Am. A , vol.4 , Issue.12 , pp. 2379-2394
    • Field, D.1
  • 5
    • 0000929221 scopus 로고
    • What Is the Goal of Sensory Coding
    • Jan
    • D. Field, "What Is the Goal of Sensory Coding," Neural Computation vol. 6, no. 4, pp. 559-601, Jan. 1989.
    • (1989) Neural Computation , vol.6 , Issue.4 , pp. 559-601
    • Field, D.1
  • 6
    • 0033338289 scopus 로고    scopus 로고
    • Image Compression via Joint Statistical Characterization in the Wavelet Domain
    • R. Bucccigrossi and E. Simoncelli, "Image Compression via Joint Statistical Characterization in the Wavelet Domain," IEEE Trans. Image Processing, vol. 8, pp. 1688-1701, 1999.
    • (1999) IEEE Trans. Image Processing , vol.8 , pp. 1688-1701
    • Bucccigrossi, R.1    Simoncelli, E.2
  • 8
    • 0034934777 scopus 로고    scopus 로고
    • Natural Image Statistics and Neural Representation
    • E. Simoncelli and B. Olshausen, "Natural Image Statistics and Neural Representation," Ann. Rev. of Neuroscience, vol. 24, pp. 1193-1216, 2001.
    • (2001) Ann. Rev. of Neuroscience , vol.24 , pp. 1193-1216
    • Simoncelli, E.1    Olshausen, B.2
  • 11
    • 0344303607 scopus 로고    scopus 로고
    • Natural Scene Statistics as the Universal Basis of Color Context Effects
    • F. Long and D. Purves, "Natural Scene Statistics as the Universal Basis of Color Context Effects," Proc. Nat'l Academy of Sciences USA, vol. 100, no. 25, pp. 15190-15193, 2003.
    • (2003) Proc. Nat'l Academy of Sciences USA , vol.100 , Issue.25 , pp. 15190-15193
    • Long, F.1    Purves, D.2
  • 12
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images
    • B. Olshausen and D. Field, "Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images," Nature, vol. 381, pp. 607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 13
    • 0030832881 scopus 로고    scopus 로고
    • The Independent Components of Natural Scenes Are Edge Filters
    • Dec
    • A. Bell and T. Sejnowski, "The Independent Components of Natural Scenes Are Edge Filters," Vision Research, vol. 37, no. 23, pp. 3327-3328, Dec. 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3328
    • Bell, A.1    Sejnowski, T.2
  • 14
    • 0032495066 scopus 로고    scopus 로고
    • Independent Component Analysis of Natural Image Sequences Yields Spatiotemporal Filters Similar to Simple Cells in Primary Visual Cortex
    • J.H. van Hateren and D.L. Ruderman, "Independent Component Analysis of Natural Image Sequences Yields Spatiotemporal Filters Similar to Simple Cells in Primary Visual Cortex," Proc. Royal Soc. B, vol. 265, pp. 2315-2320, 1998.
    • (1998) Proc. Royal Soc. B , vol.265 , pp. 2315-2320
    • van Hateren, J.H.1    Ruderman, D.L.2
  • 15
    • 0242636409 scopus 로고    scopus 로고
    • Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain
    • Nov
    • J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, "Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain," IEEE Trans. Image Processing, vol. 12, no. 11, pp. 1338-1351, Nov. 2003.
    • (2003) IEEE Trans. Image Processing , vol.12 , Issue.11 , pp. 1338-1351
    • Portilla, J.1    Strela, V.2    Wainwright, M.3    Simoncelli, E.4
  • 16
    • 0032662774 scopus 로고    scopus 로고
    • Analysis of Multiresolution Image Denoising Schemes Using Generalized Gaussian and Complexity Priors
    • Apr
    • P. Moulin and L. Juan, "Analysis of Multiresolution Image Denoising Schemes Using Generalized Gaussian and Complexity Priors," IEEE Trans. Information Theory, vol. 45, pp. 909-919, Apr. 1999.
    • (1999) IEEE Trans. Information Theory , vol.45 , pp. 909-919
    • Moulin, P.1    Juan, L.2
  • 19
    • 0021422549 scopus 로고
    • Optimum Quantizer Performance for a Class of Non-Gaussian Memoryless Sources
    • May
    • N. Farvardin and J. Modestino, "Optimum Quantizer Performance for a Class of Non-Gaussian Memoryless Sources," IEEE Trans. Information Theory, May 1984.
    • (1984) IEEE Trans. Information Theory
    • Farvardin, N.1    Modestino, J.2
  • 21
    • 0036474679 scopus 로고    scopus 로고
    • Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance
    • Feb
    • M. Do and M. Vetterli, "Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance," IEEE Trans. Image Processing, vol. 11, no. 2, pp. 146-158, Feb. 2002.
    • (2002) IEEE Trans. Image Processing , vol.11 , Issue.2 , pp. 146-158
    • Do, M.1    Vetterli, M.2
  • 22
    • 0034258869 scopus 로고    scopus 로고
    • Adaptive Wavelet Thresholding for Image Denoising and Compression
    • Sept
    • S. Chang, B. Yu, and M. Vetterli, "Adaptive Wavelet Thresholding for Image Denoising and Compression," IEEE Trans. Image Processing, vol. 9, no. 9, pp. 1532-1546, Sept. 2000.
    • (2000) IEEE Trans. Image Processing , vol.9 , Issue.9 , pp. 1532-1546
    • Chang, S.1    Yu, B.2    Vetterli, M.3
  • 23
    • 14844354353 scopus 로고    scopus 로고
    • Natural Image Statistics for Natural Image Segmentation
    • M. Heiler and C. Schnorr, "Natural Image Statistics for Natural Image Segmentation," Int'l J. Computer Vision, vol. 63, no. 1, pp. 5-19, 2005.
    • (2005) Int'l J. Computer Vision , vol.63 , Issue.1 , pp. 5-19
    • Heiler, M.1    Schnorr, C.2
  • 24
    • 0000728115 scopus 로고
    • Informational Aspects of Visual Perception
    • F. Attneave, "Informational Aspects of Visual Perception," Psychological Rev., vol. 61, pp. 183-193, 1954.
    • (1954) Psychological Rev , vol.61 , pp. 183-193
    • Attneave, F.1
  • 25
    • 0002303753 scopus 로고
    • The Coding of Sensory Messages
    • W. Thorpe and O. Zangwill, eds, pp, Cambridge Univ. Press
    • H. Barlow, "The Coding of Sensory Messages," Current Problems in Animal Behaviour, W. Thorpe and O. Zangwill, eds., pp. 331-360, Cambridge Univ. Press, 1961.
    • (1961) Current Problems in Animal Behaviour , pp. 331-360
    • Barlow, H.1
  • 27
    • 0030779611 scopus 로고    scopus 로고
    • Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1
    • B. Olshausen and D. Field, "Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1," Vision Research, vol. 37, pp. 3311-3325, 1997.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.1    Field, D.2
  • 28
    • 0034939633 scopus 로고    scopus 로고
    • Natural Signal Statistics and Sensory Gain Control
    • O. Schwartz and E. Simoncelli, "Natural Signal Statistics and Sensory Gain Control," Nature Neuroscience, vol. 4, pp. 819-825, 2001.
    • (2001) Nature Neuroscience , vol.4 , pp. 819-825
    • Schwartz, O.1    Simoncelli, E.2
  • 29
    • 0033360244 scopus 로고    scopus 로고
    • Reading Population Codes: A Neural Implementation of Ideal Observers
    • S. Deneve, P. Latham, and A. Pouget, "Reading Population Codes: A Neural Implementation of Ideal Observers," Nature Neuroscience, vol. 2, pp. 740-745, 1999.
    • (1999) Nature Neuroscience , vol.2 , pp. 740-745
    • Deneve, S.1    Latham, P.2    Pouget, A.3
  • 30
    • 0034329021 scopus 로고    scopus 로고
    • Information Processing with Population Codes
    • A. Pouget, P. Dayan, and R. Zemel, "Information Processing with Population Codes," Nature Reviews Neuroscience, vol. 1, no. 2, pp. 125-132, 2000.
    • (2000) Nature Reviews Neuroscience , vol.1 , Issue.2 , pp. 125-132
    • Pouget, A.1    Dayan, P.2    Zemel, R.3
  • 31
    • 84898943096 scopus 로고    scopus 로고
    • Discriminant Saliency for Visual Recognition from Cluttered Scenes
    • L.K. Saul, Y. Weiss, and L. Bottou, eds, pp
    • D. Gao and N. Vasconcelos, "Discriminant Saliency for Visual Recognition from Cluttered Scenes," Advances in Neural Information Processing Systems 17, L.K. Saul, Y. Weiss, and L. Bottou, eds., pp. 481-488, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 481-488
    • Gao, D.1    Vasconcelos, N.2
  • 35
    • 0018878142 scopus 로고
    • A Feature Integration Theory of Attention
    • A. Treisman and G. Galade, "A Feature Integration Theory of Attention," Cognitive Psychology, vol. 12, no. 1, pp. 97-136, 1980.
    • (1980) Cognitive Psychology , vol.12 , Issue.1 , pp. 97-136
    • Treisman, A.1    Galade, G.2
  • 36
    • 0023716924 scopus 로고
    • Feature Analysis in Early Vision: Evidence from Search Asymmetries
    • A. Treisman and S. Gormican, "Feature Analysis in Early Vision: Evidence from Search Asymmetries," Psychological Rev., vol. 95, no. 1, pp. 15-48, 1988.
    • (1988) Psychological Rev , vol.95 , Issue.1 , pp. 15-48
    • Treisman, A.1    Gormican, S.2
  • 38
    • 0025407480 scopus 로고
    • Modeling the Role of Parallel Processing in Visual Search
    • K. Cave and J. Wolfe, "Modeling the Role of Parallel Processing in Visual Search," Cognitive Psychology, vol. 22, no. 5, pp. 225-271, 1990.
    • (1990) Cognitive Psychology , vol.22 , Issue.5 , pp. 225-271
    • Cave, K.1    Wolfe, J.2
  • 39
    • 84864888849 scopus 로고
    • Guided Search 2.0: A Revised Model of Visual Search
    • J. Wolfe, "Guided Search 2.0: A Revised Model of Visual Search," Psychonomic Bull. and Rev., vol. 1, no. 2, pp. 202-238, 1994.
    • (1994) Psychonomic Bull. and Rev , vol.1 , Issue.2 , pp. 202-238
    • Wolfe, J.1
  • 40
    • 2642558848 scopus 로고    scopus 로고
    • What Attributes Guide the Deployment of Visual Attention and How Do They Do It?
    • J. Wolfe and T. Horowitz, "What Attributes Guide the Deployment of Visual Attention and How Do They Do It?" Nature Reviews Neuroscience vol. 5, pp. 495-501, 2004.
    • (2004) Nature Reviews Neuroscience , vol.5 , pp. 495-501
    • Wolfe, J.1    Horowitz, T.2
  • 41
    • 0002312061 scopus 로고
    • Feature Selection and Feature Extraction for Text Categorization
    • D. Lewis, "Feature Selection and Feature Extraction for Text Categorization," Proc. Workshop Speech and Natural Language, pp. 212-217, 1992.
    • (1992) Proc. Workshop Speech and Natural Language , pp. 212-217
    • Lewis, D.1
  • 42
    • 0033656184 scopus 로고    scopus 로고
    • Hierarchical Classification of Web Content
    • S. Dumais and H. Chen, "Hierarchical Classification of Web Content," Proc. ACM SIGIR '00, pp. 256-263, 2000.
    • (2000) Proc. ACM SIGIR '00 , pp. 256-263
    • Dumais, S.1    Chen, H.2
  • 43
    • 0003087641 scopus 로고    scopus 로고
    • Using SVMs for Text Categorization
    • S. Dumais, "Using SVMs for Text Categorization," IEEE Intelligent Systems, vol. 13, no. 4, pp. 21-23, 1998.
    • (1998) IEEE Intelligent Systems , vol.13 , Issue.4 , pp. 21-23
    • Dumais, S.1
  • 45
    • 65749103825 scopus 로고    scopus 로고
    • Feature Selection for Extracting Semantically Rich Words,
    • Technical Report CMU-RITR-04-18, Robotics Inst, Carnegie Mellon Univ, Mar
    • Y. Seo, A. Ankolekar, and K. Sycara, "Feature Selection for Extracting Semantically Rich Words," Technical Report CMU-RITR-04-18, Robotics Inst., Carnegie Mellon Univ., Mar. 2004.
    • (2004)
    • Seo, Y.1    Ankolekar, A.2    Sycara, K.3
  • 47
    • 84960463485 scopus 로고    scopus 로고
    • Minimum Redundancy Feature Selection from Microarray Gene Expression Data
    • C. Ding and H. Peng, "Minimum Redundancy Feature Selection from Microarray Gene Expression Data," Proc. IEEE Bioinformatics Conf. (CSB '03), pp. 523-528, 2003.
    • (2003) Proc. IEEE Bioinformatics Conf. (CSB '03) , pp. 523-528
    • Ding, C.1    Peng, H.2
  • 48
    • 24344458137 scopus 로고    scopus 로고
    • Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • Aug
    • H. Peng, F. Long, and C. Ding, "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 50
    • 0036538792 scopus 로고    scopus 로고
    • Mutual Information-Based Feature Extraction on the Time-Frequency Plane
    • E. Grall-Maes and P. Beauseroy, "Mutual Information-Based Feature Extraction on the Time-Frequency Plane," IEEE Trans. Signal Processing, vol. 50, no. 4, pp. 779-790, 2002.
    • (2002) IEEE Trans. Signal Processing , vol.50 , Issue.4 , pp. 779-790
    • Grall-Maes, E.1    Beauseroy, P.2
  • 51
    • 0035661275 scopus 로고    scopus 로고
    • Application of the Mutual Information Criterion for Feature Selection in Computer-Aided Diagnosis
    • G. Tourassi, E. Frederick, M. Markey, and C. Floyd Jr., "Application of the Mutual Information Criterion for Feature Selection in Computer-Aided Diagnosis," Medical Physics, vol. 28, p. 2394, 2001.
    • (2001) Medical Physics , vol.28 , pp. 2394
    • Tourassi, G.1    Frederick, E.2    Markey, M.3    Floyd Jr., C.4
  • 52
    • 13844298045 scopus 로고    scopus 로고
    • Estimating Optimal Feature Subsets Using Efficient Estimation of High-Dimensional Mutual Information
    • T. Chow and D. Huang, "Estimating Optimal Feature Subsets Using Efficient Estimation of High-Dimensional Mutual Information," IEEE Trans. Neural Networks, vol. 16, no. 1, pp. 213-224, 2005.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.1 , pp. 213-224
    • Chow, T.1    Huang, D.2
  • 54
    • 0028468293 scopus 로고
    • Using Mutual Information for Selecting Features in Supervised Neural Net Learning
    • July
    • R. Battiti, "Using Mutual Information for Selecting Features in Supervised Neural Net Learning," IEEE Trans. Neural Networks, vol. 5, no. 4, pp. 537-550, July 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 55
    • 0036127473 scopus 로고    scopus 로고
    • Input Feature Selection for Classification Problems
    • M. Kwak and C. Choi, "Input Feature Selection for Classification Problems," IEEE Trans. Neural Networks, vol. 13, no. 1, pp. 143-159, 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, M.1    Choi, C.2
  • 57
    • 84898987386 scopus 로고    scopus 로고
    • Data Visualization and Feature Selection: New Algorithms for Non-Gaussian Data
    • H. Yang and J. Moody, "Data Visualization and Feature Selection: New Algorithms for Non-Gaussian Data," Proc. Neural Information Processing Systems, 2000.
    • (2000) Proc. Neural Information Processing Systems
    • Yang, H.1    Moody, J.2
  • 58
    • 33645690579 scopus 로고    scopus 로고
    • Fast Binary Feature Selection with Conditional Mutual Information, The
    • F. Fleuret, "Fast Binary Feature Selection with Conditional Mutual Information," The J. Machine Learning Research, vol. 5, pp. 1531-1555, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 59
    • 0036307392 scopus 로고    scopus 로고
    • Visual Features of Intermediate Complexity and Their Use in Classification
    • S. Ullman, M. Vidal-Naquet, and E. Sali, "Visual Features of Intermediate Complexity and Their Use in Classification," Nature Neuroscience, vol. 5, no. 7, pp. 1-6, 2002.
    • (2002) Nature Neuroscience , vol.5 , Issue.7 , pp. 1-6
    • Ullman, S.1    Vidal-Naquet, M.2    Sali, E.3
  • 66
    • 0031078007 scopus 로고    scopus 로고
    • Feature Selection: Evaluation, Application, and Small Sample Performance
    • Feb
    • A. Jain and D. Zongker, "Feature Selection: Evaluation, Application, and Small Sample Performance," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 2, pp. 153-158, Feb. 1997.
    • (1997) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 67
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund and R. Schapire, "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting," J. Computer and System Sciences, vol. 55, no. 1, pp. 119-139, 1997.
    • (1997) J. Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 68
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods
    • R. Schapire, Y. Freund, P. Bartlett, and W. Lee, "Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods," The Annals of Statistics, vol. 26, no. 5, pp. 1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 69
    • 0242498509 scopus 로고    scopus 로고
    • Feature Selection for the Naive Bayesian Classifier Using Decision Trees
    • C. Ratanamahatana and D. Gunopulos, "Feature Selection for the Naive Bayesian Classifier Using Decision Trees," Applied Artificial Intelligence, vol. 17, no. 5, pp. 475-487, 2003.
    • (2003) Applied Artificial Intelligence , vol.17 , Issue.5 , pp. 475-487
    • Ratanamahatana, C.1    Gunopulos, D.2
  • 71
    • 1542315968 scopus 로고    scopus 로고
    • Object Detection Using the Statistics of Parts
    • H. Schneiderman and T. Kanade, "Object Detection Using the Statistics of Parts," Int'l J. Computer Vision, vol. 56, no. 3, pp. 151-177, 2004.
    • (2004) Int'l J. Computer Vision , vol.56 , Issue.3 , pp. 151-177
    • Schneiderman, H.1    Kanade, T.2
  • 72
    • 0017368046 scopus 로고
    • On the Possible Orderings in the Measurement Selection Problem
    • Sept
    • T. Cover and J.V. Campenhout, "On the Possible Orderings in the Measurement Selection Problem," IEEE Trans. Systems, Man, and Cybernetics, vol. 7, no. 9, Sept. 1977.
    • (1977) IEEE Trans. Systems, Man, and Cybernetics , vol.7 , Issue.9
    • Cover, T.1    Campenhout, J.V.2
  • 73
    • 0028547556 scopus 로고
    • Floating Search Methods in Feature Selection
    • P. Pudil, J. Novovičová, and J. Kittler, "Floating Search Methods in Feature Selection," Pattern Recognition Letters, vol. 15, no. 11, pp. 1119-1125, 1994.
    • (1994) Pattern Recognition Letters , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovičová, J.2    Kittler, J.3
  • 77
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces versus Fisherfaces: Recognition Using Class Specific Linear Projection
    • July
    • P. Belhumeur, J. Hespanha, and D. Kriegman, "Eigenfaces versus Fisherfaces: Recognition Using Class Specific Linear Projection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, July 1997.
    • (1997) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.1    Hespanha, J.2    Kriegman, D.3
  • 80
    • 27544455403 scopus 로고    scopus 로고
    • Some Relationships between Minimum Bayes Error and Information Theoretical Feature Extraction
    • M. Vasconcelos and N. Vasconcelos, "Some Relationships between Minimum Bayes Error and Information Theoretical Feature Extraction," Proc. SPIE, vol. 5807, p. 284, 2005.
    • (2005) Proc. SPIE , vol.5807 , pp. 284
    • Vasconcelos, M.1    Vasconcelos, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.