메뉴 건너뛰기




Volumn 17, Issue 1, 2009, Pages 55-88

Constraint handling using tournament selection: Abductive inference in partly deterministic bayesian networks

Author keywords

Approximate abductive inference; Bayesian network; Constraint optimization problem; Genetic algorithm; Most probable explanation

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; COMPUTER NETWORK; COMPUTER SIMULATION; METHODOLOGY; PROBABILITY; PROBLEM SOLVING; THEORETICAL MODEL;

EID: 62249172941     PISSN: 10636560     EISSN: 15309304     Source Type: Journal    
DOI: 10.1162/evco.2009.17.1.55     Document Type: Article
Times cited : (6)

References (49)
  • 1
    • 0032089922 scopus 로고    scopus 로고
    • Approximating MAPs for belief networks is NP-hard and other theorems
    • Abdelbar, A. M., and Hedetniemi, S. M. (1998). Approximating MAPs for belief networks is NP-hard and other theorems. Artificial Intelligence, 102:21-38.
    • (1998) Artificial Intelligence , vol.102 , pp. 21-38
    • Abdelbar, A.M.1    Hedetniemi, S.M.2
  • 2
    • 0003913211 scopus 로고    scopus 로고
    • Bäck, T, Fogel, D. B, and Michalewicz, Z, Eds, Bristol, UK: Institute of Physics Publishing
    • Bäck, T., Fogel, D. B., and Michalewicz, Z. (Eds.). (2000a). Evolutionary computation 1: Basic algorithms and operators. Bristol, UK: Institute of Physics Publishing.
    • (2000) Evolutionary computation 1: Basic algorithms and operators
  • 3
    • 0003913211 scopus 로고    scopus 로고
    • Back, T, Fogel, D. B, and Michalewicz, Z, Eds, Bristol, UK: Institute of Physics Publishing
    • Back, T., Fogel, D. B., and Michalewicz, Z. (Eds.). (2000b). Evolutionary computation 2: Advanced algorithms and operators. Bristol, UK: Institute of Physics Publishing.
    • (2000) Evolutionary computation 2: Advanced algorithms and operators
  • 6
    • 0001249662 scopus 로고    scopus 로고
    • AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks
    • Cheng, J., and Druzdzel, M. J. (2000). AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks, Journal of Artificial Intelligence Research, 13:155-188.
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 155-188
    • Cheng, J.1    Druzdzel, M.J.2
  • 7
    • 0037016631 scopus 로고    scopus 로고
    • Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
    • Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11-12) :1245-1287.
    • (2002) Computer Methods in Applied Mechanics and Engineering , vol.191 , Issue.11-12 , pp. 1245-1287
    • Coello, C.A.1
  • 8
    • 0442289111 scopus 로고    scopus 로고
    • Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
    • Coello, C. A., and Montes, E. M. (2002). Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, 16(3):193-203.
    • (2002) Advanced Engineering Informatics , vol.16 , Issue.3 , pp. 193-203
    • Coello, C.A.1    Montes, E.M.2
  • 10
    • 0003064380 scopus 로고
    • Applications of a general propagation algorithm for probabilistic expert systems
    • Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing, 2:25-36.
    • (1992) Statistics and Computing , vol.2 , pp. 25-36
    • Dawid, A.P.1
  • 11
    • 0036531188 scopus 로고    scopus 로고
    • Partial abductive inference in Bayesian belief networks: An evolutionary computation approach by using problem-specific genetic operators
    • de Campos, L. M., Gámez, J. A., and Moral, S. (2002). Partial abductive inference in Bayesian belief networks: An evolutionary computation approach by using problem-specific genetic operators. IEEE Transactions on Evolutionary Computation, 6:105-131.
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , pp. 105-131
    • de Campos, L.M.1    Gámez, J.A.2    Moral, S.3
  • 12
    • 0033729054 scopus 로고    scopus 로고
    • An efficient constraint handling method for genetic algorithms
    • Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186:311-338.
    • (2000) Computer Methods in Applied Mechanics and Engineering , vol.186 , pp. 311-338
    • Deb, K.1
  • 15
    • 0142203516 scopus 로고    scopus 로고
    • Evolutionary algorithms and constraint satisfaction: Definitions, survey, methodology, and research directions
    • L. Kallel, B. Naudts, and A. Rogers Eds, Berlin: Springer
    • Eiben, A. E. (2001). Evolutionary algorithms and constraint satisfaction: Definitions, survey, methodology, and research directions. In L. Kallel, B. Naudts, and A. Rogers (Eds.), Theoretical aspects of evolutionary computing, pp. 13-58. Berlin: Springer.
    • (2001) Theoretical aspects of evolutionary computing , pp. 13-58
    • Eiben, A.E.1
  • 16
    • 0029273441 scopus 로고
    • Applying Bayesian networks to information retrieval
    • Fung, R., and del Favero, B. (1995). Applying Bayesian networks to information retrieval. Communications of the ACM, 38(3):42-57.
    • (1995) Communications of the ACM , vol.38 , Issue.3 , pp. 42-57
    • Fung, R.1    del Favero, B.2
  • 18
    • 26944460634 scopus 로고    scopus 로고
    • Abductive inference in Bayesian networks: A review
    • J. A. Gámez, S. Moral, and A. Salmerón Eds, Berlin: Springer
    • Gámez, J. A. (2004). Abductive inference in Bayesian networks: A review. In J. A. Gámez, S. Moral, and A. Salmerón (Eds.), Advances in Bayesian networks, pp. 101-117. Berlin: Springer.
    • (2004) Advances in Bayesian networks , pp. 101-117
    • Gámez, J.A.1
  • 19
    • 0001698338 scopus 로고
    • Abductive reasoning in Bayesian belief networks using a genetic algorithm
    • Gelsema, E. S. (1995). Abductive reasoning in Bayesian belief networks using a genetic algorithm. Pattern Recognition Letters, 16:865-871.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 865-871
    • Gelsema, E.S.1
  • 21
    • 0002819121 scopus 로고
    • A comparative analysis of selection schemes used in genetic algorithms
    • Goldberg, D. E., and Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms, 1:69-93.
    • (1991) Foundations of Genetic Algorithms , vol.1 , pp. 69-93
    • Goldberg, D.E.1    Deb, K.2
  • 24
    • 0026751637 scopus 로고
    • Toward normative expert systems: Part II - Probability-based representations for efficient knowledge acquisition and inference
    • Heckerman, D. E., and Nathwani, B. N. (1992). Toward normative expert systems: Part II - Probability-based representations for efficient knowledge acquisition and inference. Methods of Information in Medicine, 31:106-116.
    • (1992) Methods of Information in Medicine , vol.31 , pp. 106-116
    • Heckerman, D.E.1    Nathwani, B.N.2
  • 26
    • 0003463297 scopus 로고
    • Ann Arbor, MI: The University of Michigan Press, Second edition, Cambridge, MA: The MIT Press
    • Holland, J. H. (1985). Adaptation in natural and artificial systems. Ann Arbor, MI: The University of Michigan Press. (Second edition, Cambridge, MA: The MIT Press, 1992.)
    • (1985) Adaptation in natural and artificial systems
    • Holland, J.H.1
  • 32
    • 0343766902 scopus 로고
    • Abductive inference using probabilistic networks: Randomized search techniques
    • Technical Report KSL-90-73, Knowledge Systems Laboratory, Stanford University, CA
    • Lin, R., Galper, A., and Shachter, R. (1990). Abductive inference using probabilistic networks: Randomized search techniques. Technical Report KSL-90-73, Knowledge Systems Laboratory, Stanford University, CA.
    • (1990)
    • Lin, R.1    Galper, A.2    Shachter, R.3
  • 36
    • 33750631759 scopus 로고    scopus 로고
    • Controlled generation of hard and easy Bayesian networks: Impact on maximal clique size in tree clustering
    • Mengshoel, O. J., Wilkins, D. C., and Roth, D. (2006). Controlled generation of hard and easy Bayesian networks: Impact on maximal clique size in tree clustering. Artificial Intelligence, 170(16-17):1137-1174.
    • (2006) Artificial Intelligence , vol.170 , Issue.16-17 , pp. 1137-1174
    • Mengshoel, O.J.1    Wilkins, D.C.2    Roth, D.3
  • 37
    • 25444524580 scopus 로고    scopus 로고
    • Evolutionary algorithms for constrained parameter optimization problems
    • 4(l):l-32
    • Michalewicz, Z., and Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 4(l):l-32.
    • (1996) Evolutionary Computation
    • Michalewicz, Z.1    Schoenauer, M.2
  • 38
    • 0006776658 scopus 로고    scopus 로고
    • An efficient algorithm for finding the M most probable configurations in Bayesian networks
    • Nilsson, D. (1998). An efficient algorithm for finding the M most probable configurations in Bayesian networks. Statistics and Computing, 9:159-173.
    • (1998) Statistics and Computing , vol.9 , pp. 159-173
    • Nilsson, D.1
  • 39
    • 62249128697 scopus 로고    scopus 로고
    • Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann. (Revised second printing, 1991.)
    • Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann. (Revised second printing, 1991.)
  • 41
    • 0028407533 scopus 로고
    • Control of selective perception using Bayes nets and decision theory
    • Rimey, R. D., and Brown, C. M. (1994). Control of selective perception using Bayes nets and decision theory. International Journal of Computer Vision, 12(2/3):173-207.
    • (1994) International Journal of Computer Vision , vol.12 , Issue.2-3 , pp. 173-207
    • Rimey, R.D.1    Brown, C.M.2
  • 42
    • 0006214312 scopus 로고
    • Galgo: A genetic algorithm decision support tool for complex uncertain systems modeled with Bayesian belief networks
    • San Mateo, CA: Morgan Kaufmann
    • Rojas-Guzmán, C., and Kramer, M. A. (1993). Galgo: A genetic algorithm decision support tool for complex uncertain systems modeled with Bayesian belief networks. Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence (UAI'93), pp. 368-375. San Mateo, CA: Morgan Kaufmann.
    • (1993) Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence (UAI'93) , pp. 368-375
    • Rojas-Guzmán, C.1    Kramer, M.A.2
  • 43
    • 0006221889 scopus 로고    scopus 로고
    • An evolutionary computing approach to probabilistic reasoning in Bayesian networks
    • Rojas-Guzmán, C., and Kramer, M. A. (1996). An evolutionary computing approach to probabilistic reasoning in Bayesian networks. Evolutionary Computation, 4:57-85.
    • (1996) Evolutionary Computation , vol.4 , pp. 57-85
    • Rojas-Guzmán, C.1    Kramer, M.A.2
  • 45
    • 0028516334 scopus 로고
    • An algorithm directly finding the K most probable configurations in Bayesian networks
    • Seroussi, B., and Goldmard, J. L. (1994). An algorithm directly finding the K most probable configurations in Bayesian networks. International Journal of Approximate Reasoning, 11:205-233.
    • (1994) International Journal of Approximate Reasoning , vol.11 , pp. 205-233
    • Seroussi, B.1    Goldmard, J.L.2
  • 46
    • 0028483915 scopus 로고
    • Finding MAPs for belief networks is NP-hard
    • Shimony, E. (1994). Finding MAPs for belief networks is NP-hard. Artificial Intelligence, 68:399-410.
    • (1994) Artificial Intelligence , vol.68 , pp. 399-410
    • Shimony, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.