-
2
-
-
84958949201
-
Every niching method has its niche: Fitness sharing and implicit sharing compared
-
New York, NY, Springer
-
P. Darwen and X. Yao. Every niching method has its niche: Fitness sharing and implicit sharing compared. In Proc. Parallel Problem Solving from Nature - PPSN IV, pages 398-407, New York, NY, 1996. Springer.
-
(1996)
Proc. Parallel Problem Solving from Nature - PPSN IV
, pp. 398-407
-
-
Darwen, P.1
Yao, X.2
-
3
-
-
0002992032
-
Using genetic algorithms to solve NP-complete problems
-
J. D. Schaffer, editor, San Mateo, CA, Morgan Kaufman
-
K. A. De Jong and W. M. Spears. Using genetic algorithms to solve NP-complete problems. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, CA, 1989. Morgan Kaufman.
-
(1989)
Proceedings of the Third International Conference on Genetic Algorithms
-
-
De Jong, K.A.1
Spears, W.M.2
-
4
-
-
0002284602
-
An investigation of niche and species-formation in genetic function optimization
-
J. D. Schaffer, editor, San Mateo, CA, Morgan Kaufman
-
K. Deb and D. E. Goldberg. An investigation of niche and species-formation in genetic function optimization. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, CA, 1989. Morgan Kaufman.
-
(1989)
Proceedings of the Third International Conference on Genetic Algorithms
-
-
Deb, K.1
Goldberg, D.E.2
-
5
-
-
0001698338
-
Abductive reasoning in Bayesian belief networks using a genetic algorithm
-
E. S. Gelsema. Abductive reasoning in Bayesian belief networks using a genetic algorithm. Pattern Recognition Letters, 16:865-871, 1995.
-
(1995)
Pattern Recognition Letters
, vol.16
, pp. 865-871
-
-
Gelsema, E.S.1
-
7
-
-
0005350266
-
-
Technical Report IlliGAL Report No 92005, University of Illinois, Urbana
-
D. E. Goldberg, K. Deb, and J. Horn. Massive multimodality, deception, and genetic algorithms. Technical Report IlliGAL Report No 92005, University of Illinois, Urbana, 1992.
-
(1992)
Massive multimodality, deception, and genetic algorithms
-
-
Goldberg, D.E.1
Deb, K.2
Horn, J.3
-
10
-
-
0343766902
-
-
Technical Report KSL-90-73, Knowledge Systems Laboratory, Stanford, November
-
R. Lin, A. Galper, and R. Shachter. Abductive inference using probabilistic networks: Randomized search techniques. Technical Report KSL-90-73, Knowledge Systems Laboratory, Stanford, November 1990.
-
(1990)
Abductive inference using probabilistic networks: Randomized search techniques
-
-
Lin, R.1
Galper, A.2
Shachter, R.3
-
11
-
-
0031365478
-
Belief network inference in dynamic environments
-
Providence, RI
-
O. J. Mengshoel. Belief network inference in dynamic environments. In Proc. of AAAI-97, page 813, Providence, RI, 1997.
-
(1997)
Proc. of AAAI-97
, pp. 813
-
-
Mengshoel, O.J.1
-
12
-
-
84947733174
-
Deceptive and other functions of unitation as Bayesian networks
-
Madison, WI, July, To appear
-
O. J. Mengshoel, D. E. Goldberg, and D. C. Wilkins. Deceptive and other functions of unitation as Bayesian networks. In Genetic Programming 1998: Proceedings of the Third Annual Conference, Madison, WI, July 1998. To appear.
-
(1998)
Genetic Programming 1998: Proceedings of the Third Annual Conference
-
-
Mengshoel, O.J.1
Goldberg, D.E.2
Wilkins, D.C.3
-
13
-
-
84886783376
-
Abstraction for belief revision: Using a genetic algorithm to compute the most probable explanation
-
Stanford University, CA, March
-
O. J. Mengshoel and D. C. Wilkins. Abstraction for belief revision: Using a genetic algorithm to compute the most probable explanation. In Proc. 1998 AAAI Spring Symposium on Satisficing Models, pages 46-53, Stanford University, CA, March 1998.
-
(1998)
Proc. 1998 AAAI Spring Symposium on Satisficing Models
, pp. 46-53
-
-
Mengshoel, O.J.1
Wilkins, D.C.2
-
15
-
-
0006221889
-
An evolutionary computing approach to probabilistic reasoning on Bayesian networks
-
C. Rojas-Guzman and M. A. Kramer. An evolutionary computing approach to probabilistic reasoning on Bayesian networks. Evolutionary Computation, 4(1):57-85, 1996.
-
(1996)
Evolutionary Computation
, vol.4
, Issue.1
, pp. 57-85
-
-
Rojas-Guzman, C.1
Kramer, M.A.2
-
16
-
-
0028483915
-
Finding MAPs for belief networks is NP-hard
-
E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial Intelligence, 68:399-410, 1994.
-
(1994)
Artificial Intelligence
, vol.68
, pp. 399-410
-
-
Shimony, E.1
|