메뉴 건너뛰기




Volumn 17, Issue 1, 2009, Pages 89-115

A generic multi-dimensional feature extraction method using multiobjective genetic programming

Author keywords

Feature extraction; Genetic programming; Multi dimensional mapping; Multiobjective optimization; Optimal dimensionality; Pattern recognition; Search

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGICAL MODEL; CONFIDENCE INTERVAL; DATA BASE; HUMAN; METHODOLOGY; MOLECULAR COMPUTER; MUTATION; REPRODUCIBILITY; RESEARCH; STATISTICAL MODEL; THEORETICAL MODEL;

EID: 62249094556     PISSN: 10636560     EISSN: 15309304     Source Type: Journal    
DOI: 10.1162/evco.2009.17.1.89     Document Type: Article
Times cited : (27)

References (49)
  • 2
    • 0013228191 scopus 로고
    • The classification performance of RDA
    • Technical Report 92-01, Department of Computer Science and Department of Mathematics and Statistics, lames Cook University, North Queensland
    • Aeberhard, S., Coomans, D., and de Vel, O. (1992). The classification performance of RDA. Technical Report 92-01, Department of Computer Science and Department of Mathematics and Statistics, lames Cook University, North Queensland.
    • (1992)
    • Aeberhard, S.1    Coomans, D.2    de Vel, O.3
  • 3
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 x 2 cv F-test for comparing supervised classification learning algorithms
    • Alpaydin, E. (1999). Combined 5 x 2 cv F-test for comparing supervised classification learning algorithms. Neural Computation, 11(8):1885-1892.
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 5
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA. University of California, Department of Information & Computer Science. Available at
    • Blake, C. L., and Merz, C. J. (1998). UCI repository of machine learning databases, Irvine, CA. University of California, Department of Information & Computer Science. Available at http://www.ics.uci.edu/~mlearn/MLrepository. html.
    • (1998) UCI repository of machine learning databases
    • Blake, C.L.1    Merz, C.J.2
  • 6
    • 77957889190 scopus 로고    scopus 로고
    • Feature extraction for the k-nearest neighbour classifier with genetic programming
    • Bot, M. J. C. (2001). Feature extraction for the k-nearest neighbour classifier with genetic programming. Proceedings of EuroGP 2001, pp. 256-267.
    • (2001) Proceedings of EuroGP 2001 , pp. 256-267
    • Bot, M.J.C.1
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining & Knowledge Discovery, 2:121-167.
    • (1998) Data Mining & Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 0000626184 scopus 로고    scopus 로고
    • An updated survey of GA-based multiobjective optimization techniques
    • Coello, C. A. C. (2000). An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, 32:109-143.
    • (2000) ACM Computing Surveys , vol.32 , pp. 109-143
    • Coello, C.A.C.1
  • 11
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10:1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 13
    • 0001945040 scopus 로고    scopus 로고
    • On the evolution of interest operators using genetic programming
    • W. Banzhaf and T. C. Fogarty Eds, Berlin: Springer-Verlag
    • Ebner, M. (1998). On the evolution of interest operators using genetic programming. In W. Banzhaf and T. C. Fogarty (Eds.), Proceedings of Late Breaking Papers in V European Workshop on Genetic Programming, pp. 6-10. Berlin: Springer-Verlag.
    • (1998) Proceedings of Late Breaking Papers in V European Workshop on Genetic Programming , pp. 6-10
    • Ebner, M.1
  • 15
    • 3543074493 scopus 로고    scopus 로고
    • Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming
    • Ekárt, A., and Németh, S. Z. (2001). Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming. Genetic Programming and Evolvable Machines, 2:61-73.
    • (2001) Genetic Programming and Evolvable Machines , vol.2 , pp. 61-73
    • Ekárt, A.1    Németh, S.Z.2
  • 16
  • 17
    • 33244460050 scopus 로고    scopus 로고
    • Breast cancer diagnosis using genetic programming generated feature
    • Guo, H., and Nandi, A. K. (2006). Breast cancer diagnosis using genetic programming generated feature. Pattern Recognition, 39:980-987.
    • (2006) Pattern Recognition , vol.39 , pp. 980-987
    • Guo, H.1    Nandi, A.K.2
  • 19
    • 62249185448 scopus 로고    scopus 로고
    • An investigation into the application of genetic programming techniques to signal analysis and feature detection. PhD Thesis. Department of Computer Science, University College London
    • Harris, C. (1997). An investigation into the application of genetic programming techniques to signal analysis and feature detection. PhD Thesis. Department of Computer Science, University College London.
    • (1997)
    • Harris, C.1
  • 21
    • 29144521785 scopus 로고    scopus 로고
    • The genetic kernel support vector machine: Description and evaluation
    • Howley, T., and Madden, M. G. (2005). The genetic kernel support vector machine: Description and evaluation. Artificial Intelligence Review, 24:379-395.
    • (2005) Artificial Intelligence Review , vol.24 , pp. 379-395
    • Howley, T.1    Madden, M.G.2
  • 26
    • 27144450271 scopus 로고    scopus 로고
    • Genetic programming-based construction of features for machine learning and knowledge discovery tasks
    • Krawiec, K. (2002). Genetic programming-based construction of features for machine learning and knowledge discovery tasks. Genetic Programming and Evolvable Machines, 3:329-343.
    • (2002) Genetic Programming and Evolvable Machines , vol.3 , pp. 329-343
    • Krawiec, K.1
  • 27
    • 0036718538 scopus 로고    scopus 로고
    • Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: A Pareto converging genetic algorithm
    • Kumar, R., and Rockett, P. I. (2002). Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: A Pareto converging genetic algorithm. Evolutionary Computation, 10:283-314.
    • (2002) Evolutionary Computation , vol.10 , pp. 283-314
    • Kumar, R.1    Rockett, P.I.2
  • 30
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim, T., Loh, W., and Shih, Y. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 40:203-228.
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, T.1    Loh, W.2    Shih, Y.3
  • 32
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian, O. L., and Wolberg, W. H. (1990). Cancer diagnosis via linear programming. SIAM News, 23:1-18.
    • (1990) SIAM News , vol.23 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 33
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • Mangasarian, O. L., Street, W. N., and Wolberg, W. H. (1995). Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43:570-577.
    • (1995) Operations Research , vol.43 , pp. 570-577
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 38
    • 0006588661 scopus 로고
    • Synthesis and performance analysis of multilayer neural network architectures
    • Technical Report 16/1992, Institute fur Physics, University of Koblenz
    • Schiffmann, W., Joost, M., and Werner, R. (1992). Synthesis and performance analysis of multilayer neural network architectures. Technical Report 16/1992, Institute fur Physics, University of Koblenz.
    • (1992)
    • Schiffmann, W.1    Joost, M.2    Werner, R.3
  • 40
    • 27944437848 scopus 로고    scopus 로고
    • Genetic programming with a genetic algorithm for feature construction and selection
    • Smith, M. G., and Bull, L. (2005). Genetic programming with a genetic algorithm for feature construction and selection. Genetic Programming and Evolvable Machines, 6(3):265-281.
    • (2005) Genetic Programming and Evolvable Machines , vol.6 , Issue.3 , pp. 265-281
    • Smith, M.G.1    Bull, L.2
  • 45
    • 32444433452 scopus 로고    scopus 로고
    • Evolving optimal feature extraction using multi-objective genetic programming: A methodology and preliminary study on edge detection
    • H.-G. Beyer, U.-M. O'Reilly, D. V. Arnold, W. Banzhaf, C. Blum, et al, Eds
    • Zhang, Y., and Rockett, P. I. (2005a). Evolving optimal feature extraction using multi-objective genetic programming: A methodology and preliminary study on edge detection. In H.-G. Beyer, U.-M. O'Reilly, D. V. Arnold, W. Banzhaf, C. Blum, et al. (Eds.), Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 795-802.
    • (2005) Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2005) , pp. 795-802
    • Zhang, Y.1    Rockett, P.I.2
  • 46
    • 62249219233 scopus 로고    scopus 로고
    • A generic optimal feature extraction method using multi-objective genetic programming: Methodology and applications
    • Submitted to
    • Zhang, Y., and Rockett, P. I. (2005b). A generic optimal feature extraction method using multi-objective genetic programming: Methodology and applications. Submitted to Applied Soft Computing.
    • (2005) Applied Soft Computing
    • Zhang, Y.1    Rockett, P.I.2
  • 47
    • 33845310560 scopus 로고    scopus 로고
    • Feature extraction using multi-objective genetic programming
    • Y. Jin Ed, Berlin: Springer
    • Zhang, Y., and Rockett, P. I. (2006). Feature extraction using multi-objective genetic programming. In Y. Jin (Ed.), Multi-objective machine learning (pp. 75-99). Berlin: Springer.
    • (2006) Multi-objective machine learning , pp. 75-99
    • Zhang, Y.1    Rockett, P.I.2
  • 48
    • 62249108889 scopus 로고    scopus 로고
    • Domain-independent approaches to optimize feature extraction for multi-classification using multi-objective genetic programming
    • Submitted to
    • Zhang, Y., and Rockett, P. I. (2007). Domain-independent approaches to optimize feature extraction for multi-classification using multi-objective genetic programming. Submitted to Pattern Analysis & Its Applications.
    • (2007) Pattern Analysis & Its Applications
    • Zhang, Y.1    Rockett, P.I.2
  • 49
    • 58149244183 scopus 로고    scopus 로고
    • A multiple output program tree structure in genetic programming
    • Technical Report CS-TR-04/14, Department of Computer Science, School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand
    • Zhang, Y., and Zhang, M. (2004). A multiple output program tree structure in genetic programming. Technical Report CS-TR-04/14, Department of Computer Science, School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand.
    • (2004)
    • Zhang, Y.1    Zhang, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.