메뉴 건너뛰기




Volumn 23, Issue 3, 2009, Pages 261-281

Ensembling regression models to improve their predictivity: A case study in qsar (quantitative structure activity relationships) with computational chemometrics

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL CHEMISTRY; MOLECULAR GRAPHICS; REGRESSION ANALYSIS; TREES (MATHEMATICS);

EID: 62149085466     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/08839510802700847     Document Type: Article
Times cited : (15)

References (32)
  • 1
    • 0033556929 scopus 로고    scopus 로고
    • Boosted mixture of experts: An ensemble learning scheme
    • Avnimelech, R. and N. Intrator. 1999. Boosted mixture of experts: An ensemble learning scheme. Neural Computation 11:483-497.
    • (1999) Neural Computation , vol.11 , pp. 483-497
    • Avnimelech, R.1    Intrator, N.2
  • 2
    • 85181552547 scopus 로고    scopus 로고
    • Bauer, E. and R. Kohavi. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36{1-2:105-139.
    • Bauer, E. and R. Kohavi. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36{1-2):105-139.
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breinian, L. 1996. Bagging predictors. Machine Learning 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breinian, L.1
  • 8
    • 85181550252 scopus 로고    scopus 로고
    • Chen, S. H. and P. P. Wang. eds. 2004. Computational Intelligence in Economics and Finance. Berlin: Springer-Verlag.
    • Chen, S. H. and P. P. Wang. eds. 2004. Computational Intelligence in Economics and Finance. Berlin: Springer-Verlag.
  • 10
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Multiple Classifier Systems, eds. J. Kittler, and F. Roli, Cagliari, Italy, pp
    • Dietterich, T. 2000. Ensemble methods in machine learning. In Multiple Classifier Systems-1st Int. Workshop, MCS 2000, 1857, Lecture Notes in Computer Science, eds. J. Kittler, and F. Roli, Cagliari, Italy, pp. 1-15.
    • (2000) 1st Int. Workshop, MCS 2000, 1857, Lecture Notes in Computer Science , pp. 1-15
    • Dietterich, T.1
  • 11
    • 24344500472 scopus 로고    scopus 로고
    • Generalization bounds for averaged classifiers
    • Freund, Y., M. Yishay, and R. E. Schapire. 2004. Generalization bounds for averaged classifiers. Annals of Statistics 32:1698-1722.
    • (2004) Annals of Statistics , vol.32 , pp. 1698-1722
    • Freund, Y.1    Yishay, M.2    Schapire, R.E.3
  • 12
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 loss and the curse of dimensionality
    • Friedman, J. 1997. On bias, variance, 0/1 loss and the curse of dimensionality. Data Mining Knowledge Discovery 1:55-77.
    • (1997) Data Mining Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.1
  • 13
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K. 1989. On the approximate realization of continuous mappings by neural networks. Neural Networks 2:183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 15
    • 85181548943 scopus 로고    scopus 로고
    • Predictive toxicology of chemicals: Experiences and impact of Al tools
    • Gini, G. and A. Katrizky eds, Menlo Park, CA: American Association for Artificial Intelligence Press
    • Gini, G. and A. Katrizky (eds.) 1999. Predictive toxicology of chemicals: Experiences and impact of Al tools. AAAI Spring Symposium on Predictive Toxicology SS-99-01. Menlo Park, CA: American Association for Artificial Intelligence Press.
    • (1999) AAAI Spring Symposium on Predictive Toxicology SS-99-01
  • 16
    • 10044293032 scopus 로고
    • Combining unsupervised and supervised artificial neural networks to predict aquatic toxicity
    • The American Chemical Society, 2004
    • Gini, G., M. Craciun, C. Koening, and E. Benfenati. 2004. Combining unsupervised and supervised artificial neural networks to predict aquatic toxicity. J. Chemical Information and Computer Sciences (The American Chemical Society) 44(6):1897-1902.
    • (1897) J. Chemical Information and Computer Sciences , vol.44 , Issue.6
    • Gini, G.1    Craciun, M.2    Koening, C.3    Benfenati, E.4
  • 17
    • 62149089034 scopus 로고    scopus 로고
    • Mixing a symbolic and a subsymbolic expert to improve carcinogenicity prediction of aromaliccompounds
    • Berlin: Springer-Verlag
    • Gini, G., M. Lorenzini, E. Benfenati, R. Brambilla, and L. Malvé. 2001. Mixing a symbolic and a subsymbolic expert to improve carcinogenicity prediction of aromaliccompounds. Lecture Notes in Computer Science LNCS 2096, Berlin: Springer-Verlag.
    • (2001) Lecture Notes in Computer Science LNCS , vol.2096
    • Gini, G.1    Lorenzini, M.2    Benfenati, E.3    Brambilla, R.4    Malvé, L.5
  • 19
    • 34447521097 scopus 로고
    • Correlation of biological activity of phenoxya- cetic acids with Hammett substituent constants with partition coefficents
    • Hansch, C., P. P. Malony, T. Fujita, and R. M. Muir. 1962. Correlation of biological activity of phenoxya- cetic acids with Hammett substituent constants with partition coefficents. Nature, 194:178-180.
    • (1962) Nature , vol.194 , pp. 178-180
    • Hansch, C.1    Malony, P.P.2    Fujita, T.3    Muir, R.M.4
  • 20
    • 0038156116 scopus 로고    scopus 로고
    • A survey of the Predictive Toxicology Challenge 2000-2001
    • Helma, C. and S. Kramer. 2003. A survey of the Predictive Toxicology Challenge 2000-2001. Bioinfor- matics 19(10):1179-1182.
    • (2003) Bioinfor- matics , vol.19 , Issue.10 , pp. 1179-1182
    • Helma, C.1    Kramer, S.2
  • 21
    • 0011187879 scopus 로고    scopus 로고
    • Multiple classifier combination: Lessons and next steps
    • eds. A. Kandel, and H. Bunke. World Scientific
    • Ho, T. K. 2002. Multiple classifier combination: Lessons and next steps. In Hybrid Methods in Pattern Recognition, eds. A. Kandel, and H. Bunke. World Scientific 2002.
    • (2002) Hybrid Methods in Pattern Recognition
    • Ho, T.K.1
  • 26
    • 8644279686 scopus 로고    scopus 로고
    • Multi-class classifier from a combination of local experts: Toward distributed computation for real-problem classifiers. Int.]
    • Koening, C, G. Gini, M. Craciun, and E. Benfenati. 2004. Multi-class classifier from a combination of local experts: Toward distributed computation for real-problem classifiers. Int.]. Pattern Recognition and Artificial Intelligence 18(5):801-817.
    • (2004) Pattern Recognition and Artificial Intelligence , vol.18 , Issue.5 , pp. 801-817
    • Koening, C.1    Gini, G.2    Craciun, M.3    Benfenati, E.4
  • 27
    • 0000749354 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • eds. G. Tesauro, D. S. Touretzky, and T. K. Leen, Cambridge, MA: MIT Press
    • Krogh, A. and J. Vedelsby. 1995. Neural network ensembles, cross validation and active learning. In Advances in Neural Information Processing Systems, eds. G. Tesauro, D. S. Touretzky, and T. K. Leen, Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems
    • Krogh, A.1    Vedelsby, J.2
  • 29
    • 0010243675 scopus 로고
    • Naunyn Schmiedebergs
    • Meyer, H. 1899. Naunyn Schmiedebergs. Arch. Exp. Path. Pharm. 42:109-118.
    • (1899) Arch. Exp. Path. Pharm , vol.42 , pp. 109-118
    • Meyer, H.1
  • 30
    • 8344230069 scopus 로고    scopus 로고
    • Neuro-fuzzy knowledge integration applied to toxicity prediction
    • eds. R. Jain, A. Abraham, C. Faucher, and B. Jan van der Zwaag, Advanced Knowledge International Pty Ltd, Ad, Australia
    • Neagu, C.-D. and G. Gini. 2003. Neuro-fuzzy knowledge integration applied to toxicity prediction. In: Innovations in Knowkdge Engineering, eds. R. Jain, A. Abraham, C. Faucher, and B. Jan van der Zwaag, Advanced Knowledge International Pty Ltd, Ad, Australia.
    • (2003) Innovations in Knowkdge Engineering
    • Neagu, C.-D.1    Gini, G.2
  • 32
    • 0037818351 scopus 로고    scopus 로고
    • Statistical evaluation of the predictive toxicology challenge 2000-2001
    • Toivonen, H., A Srinivasan, R. D. King, S. Kramer, and C. Helma. 2003. Statistical evaluation of the predictive toxicology challenge 2000-2001. Bioinformatics 19(10):1183-1193.
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1183-1193
    • Toivonen, H.1    Srinivasan, A.2    King, R.D.3    Kramer, S.4    Helma, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.