메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 515-554

Identification of recurrent neural networks by bayesian interrogation techniques

Author keywords

A optimality; Active learning; D optimality; Infomax control; Online bayesian learning; Optimal design; System identification

Indexed keywords

BAYESIAN NETWORKS; COST FUNCTIONS; DYNAMICAL SYSTEMS; EDUCATION; INDEPENDENT COMPONENT ANALYSIS; INTERNET; LEARNING ALGORITHMS; OPTIMAL SYSTEMS; OPTIMIZATION; RECURRENT NEURAL NETWORKS;

EID: 61749089973     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (77)
  • 1
  • 2
    • 22944475815 scopus 로고    scopus 로고
    • On the interpretation and practice of dynamical differences between Hammerstein and Wiener models
    • L. A. Aguirre, M. C. S. Coelho, and M. V. Correa. On the interpretation and practice of dynamical differences between Hammerstein and Wiener models. In IEE. Proc. of Control Theory Application, volume 152, pages 349-354, 2005.
    • (2005) IEE. Proc. of Control Theory Application , vol.152 , pp. 349-354
    • Aguirre, L.A.1    Coelho, M.C.S.2    Correa, M.V.3
  • 3
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • Cambridge, MA, MIT Press
    • S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind signal separation. In Advances in Neural Information Processing Systems, volume 8, pages 757-763, Cambridge, MA, 1996. MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.H.3
  • 5
    • 34248997891 scopus 로고    scopus 로고
    • Active learning for misspecified generalized linear models
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, Cambridge, MA, MIT Press
    • F. R. Bach. Active learning for misspecified generalized linear models. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems, volume 19, pages 65-72, Cambridge, MA, 2007. MIT Press.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 65-72
    • Bach, F.R.1
  • 6
    • 0036604581 scopus 로고    scopus 로고
    • A blind approach to the Hammerstein-Wiener model identification
    • E. W. Bai. A blind approach to the Hammerstein-Wiener model identification. Automática, 38: 967-979, 2002.
    • (2002) Automática , vol.38 , pp. 967-979
    • Bai, E.W.1
  • 8
    • 0000626524 scopus 로고
    • Expected information as expected utility
    • J. M. Bernardo. Expected information as expected utility. The Annals of Statistics, 7(3):686-690, 1979.
    • (1979) The Annals of Statistics , vol.7 , Issue.3 , pp. 686-690
    • Bernardo, J.M.1
  • 11
    • 0032612381 scopus 로고    scopus 로고
    • High-order contrasts for independent component analysis
    • J. F. Cardoso. High-order contrasts for independent component analysis. Neural Computation, 11 (1):157-192, 1999.
    • (1999) Neural Computation , vol.11 , Issue.1 , pp. 157-192
    • Cardoso, J.F.1
  • 13
    • 84864047848 scopus 로고    scopus 로고
    • Faster rates in regression via active learning
    • Y. Weiss, B. Schölkopf, and J. Piatt, editors, MIT Press, Cambridge, MA
    • R. Castro, R. Willett, and R. Nowak. Faster rates in regression via active learning. In Y. Weiss, B. Schölkopf, and J. Piatt, editors, Advances in Neural Information Processing Systems 18, pages 179-186. MIT Press, Cambridge, MA, 2006b.
    • (2006) Advances in Neural Information Processing Systems 18 , pp. 179-186
    • Castro, R.1    Willett, R.2    Nowak, R.3
  • 14
    • 0035249242 scopus 로고    scopus 로고
    • Stochastic gradient identification of polynomial Wiener systems: Analysis and application
    • P. Celka, N. J. Bershad, and J. Vesin. Stochastic gradient identification of polynomial Wiener systems: Analysis and application. IEEE Trans. Signal Process., 49(2):301-313, 2001.
    • (2001) IEEE Trans. Signal Process , vol.49 , Issue.2 , pp. 301-313
    • Celka, P.1    Bershad, N.J.2    Vesin, J.3
  • 15
    • 0000529193 scopus 로고
    • Optimal bayesian experimental design for linear models
    • K. Chaloner. Optimal bayesian experimental design for linear models. The Annals of Statistics, 12 (1):283-300, 1984.
    • (1984) The Annals of Statistics , vol.12 , Issue.1 , pp. 283-300
    • Chaloner, K.1
  • 16
    • 84972528615 scopus 로고
    • Bayesian experimental design: A review
    • K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statist. Sci., 10:273-304, 1995.
    • (1995) Statist. Sci , vol.10 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 17
    • 0035414889 scopus 로고    scopus 로고
    • Nonlinear gas turibne modeling using NARMAX structures
    • N. Chiras, C. Evans, and D. Rees. Nonlinear gas turibne modeling using NARMAX structures. IEEE Trans. Instrum. Meas., 50(4):893-898, 2001.
    • (2001) IEEE Trans. Instrum. Meas , vol.50 , Issue.4 , pp. 893-898
    • Chiras, N.1    Evans, C.2    Rees, D.3
  • 18
    • 0003328374 scopus 로고
    • Neural network exploration using optimal experiment design
    • D. A. Cohn. Neural network exploration using optimal experiment design. In Advances in Neural Information Processing Systems, volume 6, pages 679-686, 1994.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 679-686
    • Cohn, D.A.1
  • 20
    • 0030493826 scopus 로고    scopus 로고
    • A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables
    • T. F. Coleman and Y. Li. A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization, 6(4): 1040-1058, 1996.
    • (1996) SIAM Journal on Optimization , vol.6 , Issue.4 , pp. 1040-1058
    • Coleman, T.F.1    Li, Y.2
  • 21
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287-314, 1994.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 23
    • 0032577379 scopus 로고    scopus 로고
    • Optimizing sound features for cortical neurons
    • R. C. deCharms, D. T. Blake, and M. M. Merzenich. Optimizing sound features for cortical neurons. Science, 280:1439-1444, 1998.
    • (1998) Science , vol.280 , pp. 1439-1444
    • deCharms, R.C.1    Blake, D.T.2    Merzenich, M.M.3
  • 26
    • 0035384014 scopus 로고    scopus 로고
    • Stimulus optimization in primary visual cortex
    • P. Földiák. Stimulus optimization in primary visual cortex. Neurocomputing, 38-40:1217-1222, 2001.
    • (2001) Neurocomputing , vol.38-40 , pp. 1217-1222
    • Földiák, P.1
  • 27
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28:133-168, 1997.
    • (1997) Machine Learning , vol.28 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 28
    • 85156219498 scopus 로고    scopus 로고
    • Active learning in multilayer perceptrons
    • David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, The MIT Press
    • K. Fukumizu. Active learning in multilayer perceptrons. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 295-301. The MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 295-301
    • Fukumizu, K.1
  • 29
    • 0033640737 scopus 로고    scopus 로고
    • Statistical active learning in multilayer perceptrons
    • K. Fukumizu. Statistical active learning in multilayer perceptrons. IEEE Transactions on Neural Networks, 11(1): 17-26, 2000.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.1 , pp. 17-26
    • Fukumizu, K.1
  • 30
    • 0008306708 scopus 로고    scopus 로고
    • Modelling the Furuta pendulum
    • LUTFD2/TFRT-7574-SE, Department of Automatic Control, Lund University, Sweden, April
    • M. Gäfvert. Modelling the Furuta pendulum. Technical report ISRN LUTFD2/TFRT-7574-SE, Department of Automatic Control, Lund University, Sweden, April 1998.
    • (1998) Technical report ISRN
    • Gäfvert, M.1
  • 35
    • 0025464263 scopus 로고
    • Structure identification of nonlinear dynamic systems - a survey on input/output approaches
    • R. Haber and H. Unbehauen. Structure identification of nonlinear dynamic systems - a survey on input/output approaches. Automatica, 26(4):651-677, 1990.
    • (1990) Automatica , vol.26 , Issue.4 , pp. 651-677
    • Haber, R.1    Unbehauen, H.2
  • 38
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans, on Neural Networks, (10):626-634, 1999.
    • (1999) IEEE Trans, on Neural Networks , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 41
    • 1842488370 scopus 로고    scopus 로고
    • Short term memory in echo state networks
    • 152, Fraunhofer AIS, 2001
    • H. Jaeger. Short term memory in echo state networks. GMD Report, 152, Fraunhofer AIS, 2001. http://publica.fraunhofer.de/starweb/pub08/en/index.htm.
    • GMD Report
    • Jaeger, H.1
  • 42
    • 0026191274 scopus 로고
    • Blind separation of sources: An adaptive algorithm based on neuromimetic architecture
    • C. Jutten and J. Hérault. Blind separation of sources: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24:1-10, 1991.
    • (1991) Signal Processing , vol.24 , pp. 1-10
    • Jutten, C.1    Hérault, J.2
  • 47
    • 85124125604 scopus 로고
    • Heterogeneous uncertainty sampling for supervised learning
    • William W. Cohen and Haym Hirsh, editors, New Brunswick, US, Morgan Kaufmann Publishers, San Francisco, US
    • D. D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised learning. In William W. Cohen and Haym Hirsh, editors, Proceedings of ICML-94, 11th International Conference on Machine Learning, pages 148-156, New Brunswick, US, 1994. Morgan Kaufmann Publishers, San Francisco, US.
    • (1994) Proceedings of ICML-94, 11th International Conference on Machine Learning , pp. 148-156
    • Lewis, D.D.1    Catlett, J.2
  • 50
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14:2531-2560, 2002.
    • (2002) Neural Computation , vol.14 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 51
    • 23044462075 scopus 로고    scopus 로고
    • C. K. Machens, T. Gollisch, O. Kolesnikova, and A. V. M. Herz. Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron, 47:447-456, 2005.
    • C. K. Machens, T. Gollisch, O. Kolesnikova, and A. V. M. Herz. Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron, 47:447-456, 2005.
  • 52
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. J. C. MacKay. Information-based objective functions for active data selection. Neural Computation, 4(4):590-604, 1992.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.C.1
  • 55
    • 0006885798 scopus 로고    scopus 로고
    • A Bayesian approach to online learning
    • Cambridge University Press
    • M. Opper and O. Winther. A Bayesian approach to online learning. In Online Learning in Neural Networks. Cambridge University Press, 1999.
    • (1999) Online Learning in Neural Networks
    • Opper, M.1    Winther, O.2
  • 56
    • 0033880373 scopus 로고    scopus 로고
    • Gray-box identification of block-oriented nonlnear models
    • R. K. Pearson and M. Pottmann. Gray-box identification of block-oriented nonlnear models. Journal of Process Control, 10:301-315, 2000.
    • (2000) Journal of Process Control , vol.10 , pp. 301-315
    • Pearson, R.K.1    Pottmann, M.2
  • 58
    • 0037462537 scopus 로고    scopus 로고
    • Shaped laser pulses as reagents
    • H. Rabitz. Shaped laser pulses as reagents. Science, 299:525-527, 2003.
    • (2003) Science , vol.299 , pp. 525-527
    • Rabitz, H.1
  • 61
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • Morgan Kaufmann, San Francisco, CA
    • N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction. In Proc. 18th International Conference on Machine Learning, pages 441-448. Morgan Kaufmann, San Francisco, CA, 2001.
    • (2001) Proc. 18th International Conference on Machine Learning , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 63
    • 34548168342 scopus 로고    scopus 로고
    • Active learning for logistic regression: An evaluation
    • A. I. Schein and L. H. Ungar. Active learning for logistic regression: an evaluation. Machine Learning, 68(3):235-265, 2007.
    • (2007) Machine Learning , vol.68 , Issue.3 , pp. 235-265
    • Schein, A.I.1    Ungar, L.H.2
  • 65
    • 0013182522 scopus 로고    scopus 로고
    • Optimal perceptron learning: An online Bayesian approach
    • Cambridge University Press
    • S. Solla and O. Winther. Optimal perceptron learning: An online Bayesian approach. In Online Learning in Neural Networks. Cambridge University Press, 1999.
    • (1999) Online Learning in Neural Networks
    • Solla, S.1    Winther, O.2
  • 66
    • 0021428040 scopus 로고
    • Experimental design: Review and comment
    • D. M. Steinberg and W.G. Hunter. Experimental design: review and comment. Technometrixs, 26: 71-97, 1984.
    • (1984) Technometrixs , vol.26 , pp. 71-97
    • Steinberg, D.M.1    Hunter, W.G.2
  • 67
    • 0001858516 scopus 로고
    • Application of a measure of information to the design and comparison of regression experiments
    • M. Stone. Application of a measure of information to the design and comparison of regression experiments. Ann. Math. Statist, 30(1):55-70, 1959.
    • (1959) Ann. Math. Statist , vol.30 , Issue.1 , pp. 55-70
    • Stone, M.1
  • 68
    • 30744458353 scopus 로고    scopus 로고
    • Active learning in approximately linear regression based on conditional expectation of generalization error
    • M. Sugiyama. Active learning in approximately linear regression based on conditional expectation of generalization error. The Journal of Machine Learning Research, 7:141-166, 2006.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 141-166
    • Sugiyama, M.1
  • 70
    • 38249003022 scopus 로고
    • Robust Bayesian experimental design and estimation for analysis of variance models using a class of normal mixtures
    • B. Toman and J. L. Gastwirth. Robust Bayesian experimental design and estimation for analysis of variance models using a class of normal mixtures. Journal of statistical planning and inference, 35(3):383-398, 1993.
    • (1993) Journal of statistical planning and inference , vol.35 , Issue.3 , pp. 383-398
    • Toman, B.1    Gastwirth, J.L.2
  • 73
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, pages 45-66, 2001b.
    • (2001) Journal of Machine Learning Research , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 74
    • 0043171157 scopus 로고    scopus 로고
    • T. M. Vaughan, W. J. Heetderks, L. J. Trejo, W. Z. Rymer, M. Weinrich, M. M. Moore, A. Kubier, B. H. Dobkin, N. Birbaumer, E. Donchin, E. W. Wolpaw, and J. R. Wolpaw. Brain-computer interface technology: a review of the Second International Meeting. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11:94-109, 2003.
    • T. M. Vaughan, W. J. Heetderks, L. J. Trejo, W. Z. Rymer, M. Weinrich, M. M. Moore, A. Kubier, B. H. Dobkin, N. Birbaumer, E. Donchin, E. W. Wolpaw, and J. R. Wolpaw. Brain-computer interface technology: a review of the Second International Meeting. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11:94-109, 2003.
  • 75
    • 0039825889 scopus 로고    scopus 로고
    • A note on Bayesian design for the normal linear model with unknown error variance
    • I. Verdinelli. A note on Bayesian design for the normal linear model with unknown error variance. Biometrika, 87:222-227, 2000.
    • (2000) Biometrika , vol.87 , pp. 222-227
    • Verdinelli, I.1
  • 77
    • 27444437823 scopus 로고    scopus 로고
    • Expressions for Rényi and Shannon entropies for multivariate distributions
    • K. Zografos and S. Nadarajah. Expressions for Rényi and Shannon entropies for multivariate distributions. Statistics and Probability Letters, 71(1):71-84, 2005.
    • (2005) Statistics and Probability Letters , vol.71 , Issue.1 , pp. 71-84
    • Zografos, K.1    Nadarajah, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.