메뉴 건너뛰기




Volumn 1, Issue 1, 2008, Pages 26-52

A kernelised fuzzy-Support Vector Machine CAD system for the diagnosis of lung cancer from tissue images

Author keywords

CAD; classification; Computer Aided Diagnosis; feature selection; kernel methods; lung cancer; microscopy images; segmentation; Support Vector Machine; SVM

Indexed keywords


EID: 61649099305     PISSN: 17562104     EISSN: 17562112     Source Type: Journal    
DOI: 10.1504/IJFIPM.2008.018291     Document Type: Article
Times cited : (7)

References (53)
  • 2
    • 84855692909 scopus 로고    scopus 로고
    • Revised 10/25/2006, Atlanta Accessed 9 October
    • American Cancer Society (2007b) What are the Key Statistics for Lung Cancer?, Revised 10/25/2006, Atlanta, http://www.cancer.org/docroot/CRI/content/CRI_2_4_1x_ What_Are_the_Key_Statistics_About_Lung_Cancer_15.asp?rnav=cri, Accessed 9 October.
    • (2007) What are the Key Statistics for Lung Cancer?
    • American Cancer Society1
  • 3
    • 84896281800 scopus 로고    scopus 로고
    • Revised 10/25/2006, Atlanta Accessed 9 October
    • American Cancer Society (2007c) What is Non-small Cell Lung Cancer?, Revised 10/25/2006, Atlanta, http://www.cancer.org/docroot/CRI/content/CRI_2_4_1x_What_Is_Non-Small_Cell_Lung_Cancer.asp?rnav=cri, Accessed 9 October.
    • (2007) What is Non-small Cell Lung Cancer?
    • American Cancer Society1
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on Support Vector Machines for pattern recognition
    • Burges, C.J.C. (1998) ‘A tutorial on Support Vector Machines for pattern recognition’, Data Mining and Knowledge Discovery, Vol. 2, No. 2, pp.121–167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 12
    • 0029100867 scopus 로고
    • Evolving neural networks for detecting breast cancer
    • Fogel, D.B., Wasson, E.C. and Boughton, E.M. (1995) ‘Evolving neural networks for detecting breast cancer’, Cancer Letters, Vol. 96, pp.49–53.
    • (1995) Cancer Letters , vol.96 , pp. 49-53
    • Fogel, D.B.1    Wasson, E.C.2    Boughton, E.M.3
  • 13
    • 0030724970 scopus 로고    scopus 로고
    • A step toward computer-assisted mammography using evolutionary programming and neural networks
    • Fogel, D.B., Wasson, E.C., Boughton, E.M. and Porto, V.W. (1997) ‘A step toward computer-assisted mammography using evolutionary programming and neural networks’, Cancer Letters, Vol. 119, pp.93–97.
    • (1997) Cancer Letters , vol.119 , pp. 93-97
    • Fogel, D.B.1    Wasson, E.C.2    Boughton, E.M.3    Porto, V.W.4
  • 16
    • 0023035566 scopus 로고
    • An iterative region-growing process for cell image segmentation based on local color similarity and global shape criteria
    • Garbay, C., Chassery, J. and Brugal, G. (1986) ‘An iterative region-growing process for cell image segmentation based on local color similarity and global shape criteria’, Analytical and Quantitative Cytology and Histology, Vol. 8, No. 1, pp.25–34.
    • (1986) Analytical and Quantitative Cytology and Histology , vol.8 , Issue.1 , pp. 25-34
    • Garbay, C.1    Chassery, J.2    Brugal, G.3
  • 18
    • 24744456340 scopus 로고    scopus 로고
    • The cell graphs of cancer
    • Gunduz, C., Yener, B. and Gultekin, S.H. (2004) ‘The cell graphs of cancer’, Bioinformatics, Vol. 20, pp.i145–i151.
    • (2004) Bioinformatics , vol.20 , pp. i145-i151
    • Gunduz, C.1    Yener, B.2    Gultekin, S.H.3
  • 19
    • 0003425664 scopus 로고    scopus 로고
    • Support Vector Machines for classification and regression
    • University of Southampton, Southhampton, UK
    • Gunn, S. (1998) ‘Support Vector Machines for classification and regression’, ISIS Technical Report, Image Speech and Intelligent Systems Group, University of Southampton, Southhampton, UK.
    • (1998) ISIS Technical Report, Image Speech and Intelligent Systems Group
    • Gunn, S.1
  • 20
    • 0004063090 scopus 로고    scopus 로고
    • Prentice-Hall, New Jersey
    • Haykin, S. (1999) Neural Networks, Prentice-Hall, New Jersey.
    • (1999) Neural Networks
    • Haykin, S.1
  • 22
    • 0003767035 scopus 로고
    • 3rd ed., J.B. Lippincott Company, Lippincott Williams & Wilkins, 4th ed., (April 1992) Philadelphia
    • Koss, L.G. (1979) Diagnostic Cytology and Its Histopathologic Bases, 3rd ed., J.B. Lippincott Company, Lippincott Williams & Wilkins, 4th ed., (April 1992) Philadelphia, Vol. 2.
    • (1979) Diagnostic Cytology and Its Histopathologic Bases , vol.2
    • Koss, L.G.1
  • 23
    • 29144443323 scopus 로고    scopus 로고
    • Performance tradeoff between Evolutionary Computation (EC)/Adaptive Boosting (AB) hybrid and Support Vector Machine breast cancer classification paradigms
    • Land Jr., W.H., Bryden, M., Lo, J.Y., McKee, D.W. and Anderson, F.R. (2002a) ‘Performance tradeoff between Evolutionary Computation (EC)/Adaptive Boosting (AB) hybrid and Support Vector Machine breast cancer classification paradigms’, Proc. 2002 Congress on Evolutionary Computation, 2002 (CEC ‘02), Vol. 1, pp.187–192.
    • (2002) Proc. 2002 Congress on Evolutionary Computation, 2002 (CEC ‘02) , vol.1 , pp. 187-192
    • Land, W.H.1    Bryden, M.2    Lo, J.Y.3    McKee, D.W.4    Anderson, F.R.5
  • 24
    • 0000366496 scopus 로고    scopus 로고
    • Using evolutionary computation to develop neural network breast cancer benign/malignant classification models
    • July 23-26, Orlando, FA, USA
    • Land Jr., W.H., Masters, T. Lo, J.Y. and McKee, D. (2000) ‘Using evolutionary computation to develop neural network breast cancer benign/malignant classification models’, Proc. 4th World Conference on Systemics, Cybernetics and Informatics (SCI2000), July 23-26, Orlando, FA, USA Vol. 10, pp.343–347.
    • (2000) Proc. 4th World Conference on Systemics, Cybernetics and Informatics (SCI2000) , vol.10 , pp. 343-347
    • Land, W.H.1    Masters, T.2    Lo, J.Y.3    McKee, D.4
  • 25
    • 0034875375 scopus 로고    scopus 로고
    • Application of evolutionary computation and neural network hybrids for breast cancer classification using mammogram and history data
    • Land Jr., W.H., Masters, T. Lo, J.Y. and McKee, D. (2001a) ‘Application of evolutionary computation and neural network hybrids for breast cancer classification using mammogram and history data’, Proc. 2001 Congress on Evolutionary Computation, 2001, Vol. 2, pp.1147–1154.
    • (2001) Proc. 2001 Congress on Evolutionary Computation, 2001 , vol.2 , pp. 1147-1154
    • Land, W.H.1    Masters, T.2    Lo, J.Y.3    McKee, D.4
  • 26
    • 0034857854 scopus 로고    scopus 로고
    • Application of adaptive boosting to EP-derived Multi-Layer Feedforward Neural Networks (MLFNs) to improve benign/malignant breast cancer classification
    • Sonka, M. and Hanson, K.M. (Eds.)
    • Land Jr., W.H., Masters, T. Lo, J.Y. and McKee, D. (2001b) ‘Application of adaptive boosting to EP-derived Multi-Layer Feedforward Neural Networks (MLFNs) to improve benign/malignant breast cancer classification’, in Sonka, M. and Hanson, K.M. (Eds.): Proc. SPIE, Medical Imaging 2001: Image Processing, Vol. 4322, pp.1717–1724.
    • (2001) Proc. SPIE, Medical Imaging 2001: Image Processing , vol.4322 , pp. 1717-1724
    • Land, W.H.1    Masters, T.2    Lo, J.Y.3    McKee, D.4
  • 29
    • 0042375847 scopus 로고    scopus 로고
    • Improving the predictive value of mammography using a specialized evolutionary programming hybrid and fitness functions
    • Sonka, M. and Fitzpatrick, J.M. (Eds.)
    • Land Jr., W.H., McKee, D.W. Anderson, F.R. and Lo, J.Y. (2003a) ‘Improving the predictive value of mammography using a specialized evolutionary programming hybrid and fitness functions’, in Sonka, M. and Fitzpatrick, J.M. (Eds.): Proc. SPIE, Medical Imaging 2003: Image Processing, Vol. 5032, pp.898–907.
    • (2003) Proc. SPIE, Medical Imaging 2003: Image Processing , vol.5032 , pp. 898-907
    • Land, W.H.1    McKee, D.W.2    Anderson, F.R.3    Lo, J.Y.4
  • 30
    • 5644229649 scopus 로고    scopus 로고
    • Breast cancer classification improvements using a new kernel function with evolutionary-programming-configured Support Vector Machines
    • Fitzpatrick, J.M. and Sonka, M. (Eds.)
    • Land Jr., W.H., McKee, D.W. Anderson, F.R. and Lo, J.Y. (2004a) ‘Breast cancer classification improvements using a new kernel function with evolutionary-programming-configured Support Vector Machines’, in Fitzpatrick, J.M. and Sonka, M. (Eds.): Proc. SPIE, Medical Imaging 2004: Image Processing, Vol. 5370, pp.880–887.
    • (2004) Proc. SPIE, Medical Imaging 2004: Image Processing , vol.5370 , pp. 880-887
    • Land, W.H.1    McKee, D.W.2    Anderson, F.R.3    Lo, J.Y.4
  • 31
    • 0037004637 scopus 로고    scopus 로고
    • Improving mammogram screening using a bank of Support Vector Machines (SVMs)
    • Dagli, C.H., Buczak, A.L. Ghosh, J., Embrechts, M.J., Ersoy, O. and Kercel, S.W. (Eds.) ASME Press, Fairfield, NJ
    • Land Jr., W.H., McKee, D.W. Lo, J.Y. and Anderson, F.R. (2002b) ‘Improving mammogram screening using a bank of Support Vector Machines (SVMs)’, in Dagli, C.H., Buczak, A.L. Ghosh, J., Embrechts, M.J., Ersoy, O. and Kercel, S.W. (Eds.): Intelligent Engineering Systems Through Artificial Neural Networks (ANNIE 2002), ASME Press, Fairfield, NJ, Vol. 12, pp.779–784.
    • (2002) Intelligent Engineering Systems Through Artificial Neural Networks (ANNIE 2002) , vol.12 , pp. 779-784
    • Land, W.H.1    McKee, D.W.2    Lo, J.Y.3    Anderson, F.R.4
  • 32
    • 5644289501 scopus 로고    scopus 로고
    • New results in Computer Aided Diagnosis (CAD) of breast cancer using a recently developed SVM/GRNN oracle hybrid
    • Fitzpatrick, J.M. and Sonka, M. (Eds.)
    • Land Jr., W.H., Wong, L., McKee, D. Masters, T., Anderson, F., Raturi, A. and Lo, J.Y. (2004c) ‘New results in Computer Aided Diagnosis (CAD) of breast cancer using a recently developed SVM/GRNN oracle hybrid’, in Fitzpatrick, J.M. and Sonka, M. (Eds.): Proc. SPIE, Medical Imaging 2004: Image Processing, Vol. 5370, pp.777–784.
    • (2004) Proc. SPIE, Medical Imaging 2004: Image Processing , vol.5370 , pp. 777-784
    • Land, W.H.1    Wong, L.2    McKee, D.3    Masters, T.4    Anderson, F.5    Raturi, A.6    Lo, J.Y.7
  • 36
    • 0041874900 scopus 로고    scopus 로고
    • Application of Support Vector Machines to breast cancer screening using mammogram and clinical history data
    • Sonka, M. and Fitzpatrick, J.M. (Eds.)
    • Land, W.H., McKee, D.W., Velazquez, R., Wong, L., Lo, J.Y. and Anderson, F.R. (2003b) ‘Application of Support Vector Machines to breast cancer screening using mammogram and clinical history data’, in Sonka, M. and Fitzpatrick, J.M. (Eds.): Proc. SPIE, Medical Imaging 2003: Image Processing, Vol. 5032, pp.546–556.
    • (2003) Proc. SPIE, Medical Imaging 2003: Image Processing , vol.5032 , pp. 546-556
    • Land, W.H.1    McKee, D.W.2    Velazquez, R.3    Wong, L.4    Lo, J.Y.5    Anderson, F.R.6
  • 38
    • 0032920606 scopus 로고    scopus 로고
    • Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks
    • Lo, J.Y., Baker, J.A., Kornguth, P.J. and Floyd Jr., C.E. (1999) ‘Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks’, Academic Radiology, Vol. 6, pp.10–15.
    • (1999) Academic Radiology , vol.6 , pp. 10-15
    • Lo, J.Y.1    Baker, J.A.2    Kornguth, P.J.3    Floyd, C.E.4
  • 39
    • 0030944929 scopus 로고    scopus 로고
    • Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features
    • Lo, J.Y., Baker, J.A., Kornguth, P.J., Iglehart, J.D. and Floyd, C.E. (1997) ‘Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features’, Radiology, Vol. 203, pp.159–163.
    • (1997) Radiology , vol.203 , pp. 159-163
    • Lo, J.Y.1    Baker, J.A.2    Kornguth, P.J.3    Iglehart, J.D.4    Floyd, C.E.5
  • 43
    • 0033461115 scopus 로고    scopus 로고
    • The use of fractal features from the periphery of cell nuclei as a classification tool
    • Nielsen, B., Albregtsen, F. and Danielsen, H.E. (1999) ‘The use of fractal features from the periphery of cell nuclei as a classification tool’, Analytical Cellular Pathology, Vol. 19, pp.21–37.
    • (1999) Analytical Cellular Pathology , vol.19 , pp. 21-37
    • Nielsen, B.1    Albregtsen, F.2    Danielsen, H.E.3
  • 45
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of Support Vector Machines using sequential minimal optimization
    • Scholkopf, B., Burges, C. and Smola, A. (Eds.) MIT Press, Cambridge, MA
    • Platt, J. (1998) ‘Fast training of Support Vector Machines using sequential minimal optimization’, in Scholkopf, B., Burges, C. and Smola, A. (Eds.): Advances in Kernel Methods: Support Vector Training, MIT Press, Cambridge, MA, pp.185–209.
    • (1998) Advances in Kernel Methods: Support Vector Training , pp. 185-209
    • Platt, J.1
  • 50
    • 0030271485 scopus 로고    scopus 로고
    • Morphological feature extraction for the classification of digital images of cancerous tissues
    • Thiran, J. and Macq, B. (1996) ‘Morphological feature extraction for the classification of digital images of cancerous tissues’, IEEE Transactions on Biomedical Engineering, Vol. 43, No. 10, pp.1011–1020.
    • (1996) IEEE Transactions on Biomedical Engineering , vol.43 , Issue.10 , pp. 1011-1020
    • Thiran, J.1    Macq, B.2
  • 52
    • 3042547731 scopus 로고    scopus 로고
    • Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections
    • Wählby, C., Sintorn, I-M., Erlandsson, F., Borgefors, G. and Bengtsson, E. (2004) ‘Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections’, Journal of Microscopy, Vol. 215, No. 1, pp.67–76.
    • (2004) Journal of Microscopy , vol.215 , Issue.1 , pp. 67-76
    • Wählby, C.1    Sintorn, I.-M.2    Erlandsson, F.3    Borgefors, G.4    Bengtsson, E.5
  • 53
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Zhou, Z-H., Jiang, Y., Yang, Y-B. and Chen, S-F. (2002) ‘Lung cancer cell identification based on artificial neural network ensembles’, Artificial Intelligence in Medicine, Vol. 24, No. 1, pp.25–36.
    • (2002) Artificial Intelligence in Medicine , vol.24 , Issue.1 , pp. 25-36
    • Zhou, Z.-H.1    Jiang, Y.2    Yang, Y.-B.3    Chen, S.-F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.