메뉴 건너뛰기




Volumn 15, Issue 3, 2009, Pages 261-290

Exponential dichotomy and boundedness for retarded functional difference equations

Author keywords

Boundedness; Difference equations; Exponential dichotomy; Infinite delay; Robustness; Volterra difference equations

Indexed keywords


EID: 61449156479     PISSN: 10236198     EISSN: 15635120     Source Type: Journal    
DOI: 10.1080/10236190802125330     Document Type: Article
Times cited : (21)

References (22)
  • 2
    • 18444367706 scopus 로고    scopus 로고
    • An asymptotic theory for retarded functional difference equations
    • C. Cuevas and L. Del Campo, An asymptotic theory for retarded functional difference equations, Comput. Math. Appl. 49 (2005), pp. 841-855.
    • (2005) Comput. Math. Appl , vol.49 , pp. 841-855
    • Cuevas, C.1    Del Campo, L.2
  • 3
    • 0033895331 scopus 로고    scopus 로고
    • Asymptotic behavior in Volterra difference systems with unbounded delay
    • C. Cuevas and M. Pinto, Asymptotic behavior in Volterra difference systems with unbounded delay, J. Comput. Appl. Math. 113 (2000), pp. 217-225.
    • (2000) J. Comput. Appl. Math , vol.113 , pp. 217-225
    • Cuevas, C.1    Pinto, M.2
  • 4
    • 0037286275 scopus 로고    scopus 로고
    • Convergent solutions of linear functional difference equations in phase space
    • -, Convergent solutions of linear functional difference equations in phase space, J. Math. Anal. Appl. 227 (2003), pp. 324-341.
    • (2003) J. Math. Anal. Appl , vol.227 , pp. 324-341
    • Cuevas, C.1    Pinto, M.2
  • 5
    • 0035997780 scopus 로고    scopus 로고
    • Discrete dichotomies and asymptotic behavior for abstract retarded functional difference equations in phase space
    • C. Cuevas and C. Vidal, Discrete dichotomies and asymptotic behavior for abstract retarded functional difference equations in phase space, J. Difference Equ. Appl. 8(7) (2002), pp. 603-640.
    • (2002) J. Difference Equ. Appl , vol.8 , Issue.7 , pp. 603-640
    • Cuevas, C.1    Vidal, C.2
  • 6
    • 33645670163 scopus 로고    scopus 로고
    • A note on discrete maximal regularity for functional difference equations with infinite delay
    • -, A note on discrete maximal regularity for functional difference equations with infinite delay, Adv. Difference Equ. 2006 (2006), pp. 1-11.
    • (2006) Adv. Difference Equ. 2006 , pp. 1-11
    • Cuevas, C.1    Vidal, C.2
  • 7
    • 0003504382 scopus 로고    scopus 로고
    • An introduction to difference equations
    • 3rd ed, Springer Verlag, Berlin
    • S. Elaydi, An introduction to difference equations, in Undergraduate Texts in Mathematics, 3rd ed., Springer Verlag, Berlin, 2005.
    • (2005) Undergraduate Texts in Mathematics
    • Elaydi, S.1
  • 8
    • 0000981504 scopus 로고    scopus 로고
    • Asymptotic equivalence for difference equations with infinite delay
    • S. Elaydi, S. Murakami, and E. Kamiyama, Asymptotic equivalence for difference equations with infinite delay, J. Difference Equ. Appl. 5 (1999), pp. 1-23.
    • (1999) J. Difference Equ. Appl , vol.5 , pp. 1-23
    • Elaydi, S.1    Murakami, S.2    Kamiyama, E.3
  • 9
    • 33745636674 scopus 로고    scopus 로고
    • Stabilities in Volterra difference equations on a Banach space
    • T. Furumochi, S. Murakami, and Y. Nagabuchi, Stabilities in Volterra difference equations on a Banach space, Fields Inst. Commun. AMS 42 (2004), pp. 159-175.
    • (2004) Fields Inst. Commun , vol.AMS 42 , pp. 159-175
    • Furumochi, T.1    Murakami, S.2    Nagabuchi, Y.3
  • 10
    • 85024747360 scopus 로고    scopus 로고
    • Volterra difference equations on a Banach space and abstract differential equations with piecewise continuous delays
    • -, Volterra difference equations on a Banach space and abstract differential equations with piecewise continuous delays, Japan, J. Math. 30(2) (2004), pp. 387-412.
    • (2004) Japan, J. Math , vol.30 , Issue.2 , pp. 387-412
    • Furumochi, T.1    Murakami, S.2    Nagabuchi, Y.3
  • 11
    • 0037303701 scopus 로고    scopus 로고
    • Existence of an almost periodic solution in a difference equation with infinite delay
    • Y. Hamaya, Existence of an almost periodic solution in a difference equation with infinite delay, J. Difference Equ. Appl. 9(2) (2003), pp. 227-237.
    • (2003) J. Difference Equ. Appl , vol.9 , Issue.2 , pp. 227-237
    • Hamaya, Y.1
  • 12
    • 17844362958 scopus 로고    scopus 로고
    • The Kneser property for abstract retarded functional differential equations with infinite delay
    • H. Henríquez, The Kneser property for abstract retarded functional differential equations with infinite delay, Int. J. Math. Math. Sci. 26 (2003), pp. 1645-1661.
    • (2003) Int. J. Math. Math. Sci , vol.26 , pp. 1645-1661
    • Henríquez, H.1
  • 13
    • 0003287113 scopus 로고
    • Functional Differential Equations with Infininte Delay
    • Belim, Springer
    • Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infininte Delay, Lecture Notes in Mathematics, Belim, Springer, 1473, 1991.
    • (1991) Lecture Notes in Mathematics , pp. 1473
    • Hino, Y.1    Murakami, S.2    Naito, T.3
  • 15
    • 0035426540 scopus 로고    scopus 로고
    • Exponential dichotomy of difference equations and applications to evolution equations on the Half-line
    • N.T. Huy and N. van Minh, Exponential dichotomy of difference equations and applications to evolution equations on the Half-line, Comput. Math. Appl. 42 (2001), pp. 301-311.
    • (2001) Comput. Math. Appl , vol.42 , pp. 301-311
    • Huy, N.T.1    van Minh, N.2
  • 16
    • 0037410098 scopus 로고    scopus 로고
    • A survey: Stability and boundedness of Volterra difference equations
    • V.B. Kolmanovskii, E.C. Velasco, and J.A. Torres, A survey: Stability and boundedness of Volterra difference equations, Nonlinear Anal. 53(7-8) (2003), pp. 861-928.
    • (2003) Nonlinear Anal , vol.53 , Issue.7-8 , pp. 861-928
    • Kolmanovskii, V.B.1    Velasco, E.C.2    Torres, J.A.3
  • 17
    • 2942744671 scopus 로고    scopus 로고
    • Some invariant manifolds for functional difference equations with infinite delay
    • H. Matsunaga and S. Murakami, Some invariant manifolds for functional difference equations with infinite delay, J. Difference Equ. Appl. 10(7) (2004), pp. 661-689.
    • (2004) J. Difference Equ. Appl , vol.10 , Issue.7 , pp. 661-689
    • Matsunaga, H.1    Murakami, S.2
  • 18
    • 15844406551 scopus 로고    scopus 로고
    • Asymptotic behavior of solutions of functional difference equations
    • -, Asymptotic behavior of solutions of functional difference equations, J. Math. Anal. Appl. 305 (2005), pp. 391-410.
    • (2005) J. Math. Anal. Appl , vol.305 , pp. 391-410
    • Matsunaga, H.1    Murakami, S.2
  • 19
  • 20
    • 0000693687 scopus 로고    scopus 로고
    • Representation of solutions of linear functional difference equations in phase space
    • -, Representation of solutions of linear functional difference equations in phase space, Nonlinear Anal. T.M.A. 30(2) (1997), pp. 1153-1164.
    • (1997) Nonlinear Anal. T.M.A , vol.30 , Issue.2 , pp. 1153-1164
    • Murakami, S.1
  • 21
    • 0001261668 scopus 로고    scopus 로고
    • Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dyn
    • K.J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dyn. Reported 1 (1998), pp. 265-306.
    • (1998) Reported , vol.1 , pp. 265-306
    • Palmer, K.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.