메뉴 건너뛰기




Volumn 49, Issue 5-6, 2005, Pages 841-855

An asymptotic theory for retarded functional difference equations

Author keywords

Asymptotic behavior; Convergent solutions; Discrete dichotomies; Functional difference equations; Krasnoselsky's theorem; Volterra difference equations

Indexed keywords

BOUNDARY CONDITIONS; CONVERGENCE OF NUMERICAL METHODS; DIFFERENCE EQUATIONS; LINEAR EQUATIONS; MATHEMATICAL MODELS; PERTURBATION TECHNIQUES; THEOREM PROVING;

EID: 18444367706     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2004.06.032     Document Type: Article
Times cited : (14)

References (16)
  • 1
    • 0003287113 scopus 로고
    • Functional Differential Equations with Infinite Delay
    • Springer New York
    • Y. Hino, S. Murakami, and T. Naito Functional Differential Equations with Infinite Delay Lecture Notes in Mathematics Volume 1473 1991 Springer New York
    • (1991) Lecture Notes in Mathematics , vol.1473
    • Hino, Y.1    Murakami, S.2    Naito, T.3
  • 2
    • 0035426658 scopus 로고    scopus 로고
    • Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay
    • C. Cuevas, and M. Pinto Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay Computers Math. Applic. 42 3-5 2001 671 685
    • (2001) Computers Math. Applic. , vol.42 , Issue.3-5 , pp. 671-685
    • Cuevas, C.1    Pinto, M.2
  • 3
    • 0037410098 scopus 로고    scopus 로고
    • A survey: Stability and boundedness of Volterra difference equations
    • V.B. Kolmanovskii, E.C. Velasco, and J.A. Torres A survey: Stability and boundedness of Volterra difference equations Nonlinear Analysis 53 7-8 2003 861 928
    • (2003) Nonlinear Analysis , vol.53 , Issue.7-8 , pp. 861-928
    • Kolmanovskii, V.B.1    Velasco, E.C.2    Torres, J.A.3
  • 4
    • 0001208813 scopus 로고
    • Bounded and zero convergent solutions of second order difference equation
    • S.S. Cheng, H.J. Li, and W. Patula Bounded and zero convergent solutions of second order difference equation J. Math. Anal. Appl. 141 1989 463 483
    • (1989) J. Math. Anal. Appl. , vol.141 , pp. 463-483
    • Cheng, S.S.1    Li, H.J.2    Patula, W.3
  • 5
    • 84968486005 scopus 로고
    • Asymptotic behavior of the solution of the second order difference equation
    • A. Drozdowicz, and J. Popenda Asymptotic behavior of the solution of the second order difference equation Proc. Amer. Math. Soc. 99 1 1987 135 140
    • (1987) Proc. Amer. Math. Soc. , vol.99 , Issue.1 , pp. 135-140
    • Drozdowicz, A.1    Popenda, J.2
  • 7
    • 0003226107 scopus 로고
    • Continuous and Discrete Dynamics near Manifolds of Equilibria
    • Springer-Verlag New York
    • B. Aulbach Continuous and Discrete Dynamics near Manifolds of Equilibria Lecture Notes in Mathematics Volume 10 1984 Springer-Verlag New York
    • (1984) Lecture Notes in Mathematics , vol.10
    • Aulbach, B.1
  • 9
    • 0002513583 scopus 로고
    • Phase space for retarded equations with infinite delay
    • J. Hale, and J. Kato Phase space for retarded equations with infinite delay Funkciolaj Ekvacioj 21 1978 11 41
    • (1978) Funkciolaj Ekvacioj , vol.21 , pp. 11-41
    • Hale, J.1    Kato, J.2
  • 10
    • 0000208273 scopus 로고    scopus 로고
    • Some spectral properties of the solution operator for linear Volterra difference system
    • Taipei, Taiwan
    • S. Murakami Some spectral properties of the solution operator for linear Volterra difference system Proc. of the Third International Conference on Difference Equations Taipei, Taiwan 1997 301 311
    • (1997) Proc. of the Third International Conference on Difference Equations , pp. 301-311
    • Murakami, S.1
  • 11
    • 0000981504 scopus 로고    scopus 로고
    • Asymptotic equivalence for difference equations with infinite delay
    • S. Elaydi, S. Murakami, and E. Kamiyama Asymptotic equivalence for difference equations with infinite delay J. Difference Eqs. Appl. 5 1999 1 23
    • (1999) J. Difference Eqs. Appl. , vol.5 , pp. 1-23
    • Elaydi, S.1    Murakami, S.2    Kamiyama, E.3
  • 12
    • 0010748815 scopus 로고    scopus 로고
    • Weighted convergent and bounded solutions of Volterra difference systems with infinite delay
    • C. Cuevas Weighted convergent and bounded solutions of Volterra difference systems with infinite delay J. Difference Eq. Appl. 6 2000 461 480
    • (2000) J. Difference Eq. Appl. , vol.6 , pp. 461-480
    • Cuevas, C.1
  • 13
    • 0033895331 scopus 로고    scopus 로고
    • Asymptotic behavior in Volterra difference systems with unbounded delay
    • C. Cuevas, and M. Pinto Asymptotic behavior in Volterra difference systems with unbounded delay J. Comp. Appl. Math. 113 2000 217 225
    • (2000) J. Comp. Appl. Math. , vol.113 , pp. 217-225
    • Cuevas, C.1    Pinto, M.2
  • 14
    • 0037286275 scopus 로고    scopus 로고
    • Convergent solutions of linear functional difference equations in phase space
    • C. Cuevas, and M. Pinto Convergent solutions of linear functional difference equations in phase space J. Math. Anal. Appl. 277 2003 324 341
    • (2003) J. Math. Anal. Appl. , vol.277 , pp. 324-341
    • Cuevas, C.1    Pinto, M.2
  • 15
    • 0000693687 scopus 로고    scopus 로고
    • Representation of solutions of linear functional difference equation in phase space
    • S. Murakami Representation of solutions of linear functional difference equation in phase space Nonlinear Anal. T.M.A. 30 2 1997 1153 1164
    • (1997) Nonlinear Anal. T.M.A. , vol.30 , Issue.2 , pp. 1153-1164
    • Murakami, S.1
  • 16
    • 0003837567 scopus 로고
    • Integral Equations and Stability of Feedback Systems
    • Academic Press New York
    • C. Corduneanu Integral Equations and Stability of Feedback Systems Mathematics in Science and Engineering Volume 104 1973 Academic Press New York
    • (1973) Mathematics in Science and Engineering , vol.104
    • Corduneanu, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.