메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages

A note on discrete maximal regularity for functional difference equations with infinite delay

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33645670163     PISSN: 16871839     EISSN: 16871847     Source Type: Journal    
DOI: 10.1155/ADE/2006/97614     Document Type: Article
Times cited : (15)

References (20)
  • 1
    • 0036628277 scopus 로고    scopus 로고
    • The operator-valued Marcinkiewicz multiplier theorem and maximal regularity
    • W. Arendt S. Bu The operator-valued Marcinkiewicz multiplier theorem and maximal regularity Mathematische Zeitschrift 240 2002 2 311-343
    • (2002) Mathematische Zeitschrift , vol.240 , Issue.2 , pp. 311-343
    • Arendt, W.1    Bu, S.2
  • 2
    • 0032678491 scopus 로고    scopus 로고
    • Stability of traveling waves: Dichotomies and eigenvalue conditions on finite intervals
    • W.-J. Beyn J. Lorenz Stability of traveling waves: Dichotomies and eigenvalue conditions on finite intervals Numerical Functional Analysis and Optimization 20 1999 3-4 201-244
    • (1999) Numerical Functional Analysis and Optimization , vol.20 , Issue.3-4 , pp. 201-244
    • Beyn, W.-J.1    Lorenz, J.2
  • 3
    • 33645657859 scopus 로고    scopus 로고
    • Stability of viscous profiles: Proofs via dichotomies
    • preprint
    • W.-J. Beyn J. Lorenz Stability of viscous profiles: Proofs via dichotomies preprint, 2004
    • (2004)
    • Beyn, W.-J.1    Lorenz, J.2
  • 5
    • 0001649612 scopus 로고    scopus 로고
    • Maximal regularity of discrete and continuous time evolution equations
    • S. Blunck Maximal regularity of discrete and continuous time evolution equations Studia Mathematica 146 2001 2 157-176
    • (2001) Studia Mathematica , vol.146 , Issue.2 , pp. 157-176
    • Blunck, S.1
  • 6
    • 0010748815 scopus 로고    scopus 로고
    • Weighted convergent and bounded solutions of Volterra difference systems with infinite delay
    • C. Cuevas Weighted convergent and bounded solutions of Volterra difference systems with infinite delay Journal of Difference Equations and Applications 6 2000 4 461-480
    • (2000) Journal of Difference Equations and Applications , vol.6 , Issue.4 , pp. 461-480
    • Cuevas, C.1
  • 7
    • 18444367706 scopus 로고    scopus 로고
    • An asymptotic theory for retarded functional difference equations
    • C. Cuevas L. Del Campo An asymptotic theory for retarded functional difference equations Computers & Mathematics with Applications 49 2005 5-6 841-855
    • (2005) Computers & Mathematics With Applications , vol.49 , Issue.5-6 , pp. 841-855
    • Cuevas, C.1    Del Campo, L.2
  • 8
    • 0033895331 scopus 로고    scopus 로고
    • Asymptotic behavior in Volterra difference systems with unbounded delay
    • C. Cuevas M. Pinto Asymptotic behavior in Volterra difference systems with unbounded delay Journal of Computational and Applied Mathematics 113 2000 1-2 217-225
    • (2000) Journal of Computational and Applied Mathematics , vol.113 , Issue.1-2 , pp. 217-225
    • Cuevas, C.1    Pinto, M.2
  • 9
    • 0035426658 scopus 로고    scopus 로고
    • Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay
    • C. Cuevas M. Pinto Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay Computers & Mathematics with Applications 42 2001 3-5 671-685
    • (2001) Computers & Mathematics With Applications , vol.42 , Issue.3-5 , pp. 671-685
    • Cuevas, C.1    Pinto, M.2
  • 10
    • 0037286275 scopus 로고    scopus 로고
    • Convergent solutions of linear functional difference equations in phase space
    • C. Cuevas M. Pinto Convergent solutions of linear functional difference equations in phase space Journal of Mathematical Analysis and Applications 277 2003 1 324-341
    • (2003) Journal of Mathematical Analysis and Applications , vol.277 , Issue.1 , pp. 324-341
    • Cuevas, C.1    Pinto, M.2
  • 11
    • 0035997780 scopus 로고    scopus 로고
    • Discrete dichotomies and asymptotic behavior for abstract retarded functional difference equations in phase space
    • C. Cuevas C. Vidal Discrete dichotomies and asymptotic behavior for abstract retarded functional difference equations in phase space Journal of Difference Equations and Applications 8 2002 7 603-640
    • (2002) Journal of Difference Equations and Applications , vol.8 , Issue.7 , pp. 603-640
    • Cuevas, C.1    Vidal, C.2
  • 13
    • 0002513583 scopus 로고
    • Phase space for retarded equations with infinite delay
    • J. K. Hale J. Kato Phase space for retarded equations with infinite delay Funkcialaj Ekvacioj 21 1978 1 11-41
    • (1978) Funkcialaj Ekvacioj , vol.21 , Issue.1 , pp. 11-41
    • Hale, J.K.1    Kato, J.2
  • 16
    • 2942744671 scopus 로고    scopus 로고
    • Some invariant manifolds for functional difference equations with infinite delay
    • H. Matsunaga S. Murakami Some invariant manifolds for functional difference equations with infinite delay Journal of Difference Equations and Applications 10 2004 7 661-689
    • (2004) Journal of Difference Equations and Applications , vol.10 , Issue.7 , pp. 661-689
    • Matsunaga, H.1    Murakami, S.2
  • 17
    • 0000693687 scopus 로고    scopus 로고
    • Representation of solutions of linear functional difference equations in phase space
    • S. Murakami Representation of solutions of linear functional difference equations in phase space Nonlinear Analysis. Theory, Methods & Applications 30 1997 2 1153-1164
    • (1997) Nonlinear Analysis. Theory, Methods & Applications , vol.30 , Issue.2 , pp. 1153-1164
    • Murakami, S.1
  • 18
    • 0000208273 scopus 로고    scopus 로고
    • Some spectral properties of the solution operator for linear Volterra difference systems
    • Gordon and Breach Amsterdam
    • S. Murakami Some spectral properties of the solution operator for linear Volterra difference systems New Developments in Difference Equations and Applications (Taipei, 1997) 301 311 Gordon and Breach Amsterdam 1999
    • (1999) New Developments in Difference Equations and Applications (Taipei, 1997) , pp. 301-311
    • Murakami, S.1
  • 20


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.