메뉴 건너뛰기




Volumn 55, Issue 2, 2009, Pages 408-422

Process intensification aspects for steam methane reforming: An overview

Author keywords

Catalyst design; Hydrogen economy; Multiscale modeling; Process intensification; Steam methane reforming

Indexed keywords

CATALYST DESIGN; HYDROGEN ECONOMY; MULTISCALE MODELING; PROCESS INTENSIFICATION; STEAM METHANE REFORMING;

EID: 60749118673     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.11687     Document Type: Article
Times cited : (114)

References (139)
  • 7
    • 0000130197 scopus 로고    scopus 로고
    • Coke formation and minimization during steam reforming reactions
    • Trimm DL. Coke formation and minimization during steam reforming reactions. Catal Today. 1997;37:233-238.
    • (1997) Catal Today , vol.37 , pp. 233-238
    • Trimm, D.L.1
  • 9
    • 0033082355 scopus 로고    scopus 로고
    • Sorption-enhanced reaction process for hydrogen production
    • Hufton JR, Mayorga S, Sircar S. Sorption-enhanced reaction process for hydrogen production. AIChE J. 1999;45:248-256.
    • (1999) AIChE J , vol.45 , pp. 248-256
    • Hufton, J.R.1    Mayorga, S.2    Sircar, S.3
  • 10
    • 0026239872 scopus 로고
    • Fluidized bed membrane steam reforming of methane
    • Adris A, Elnashaie SSEH, Hughes R. Fluidized bed membrane steam reforming of methane. Can J Chem Eng. 1991;69:1061-1070.
    • (1991) Can J Chem Eng , vol.69 , pp. 1061-1070
    • Adris, A.1    Elnashaie, S.S.E.H.2    Hughes, R.3
  • 11
    • 15544376527 scopus 로고    scopus 로고
    • Theoretical studies on multifunctional catalysts with integrated adsorption sites
    • Dietrich W, Lawrence PS, Grunewald M, Agar DW. Theoretical studies on multifunctional catalysts with integrated adsorption sites. Chem Eng J. 2005;107:103-111.
    • (2005) Chem Eng J , vol.107 , pp. 103-111
    • Dietrich, W.1    Lawrence, P.S.2    Grunewald, M.3    Agar, D.W.4
  • 12
    • 0038212050 scopus 로고
    • Plate type reformer.
    • U.S. Pat. 5,015,444
    • Koga M, Watanabe T. Plate type reformer. U.S. Pat. 5,015,444, 1991.
    • (1991)
    • Koga, M.1    Watanabe, T.2
  • 13
    • 0037437303 scopus 로고    scopus 로고
    • On a possible mechanism of the methane steam reforming in a gliding arc reactor
    • Rusu I, Cormier J-M. On a possible mechanism of the methane steam reforming in a gliding arc reactor. Chem Eng J. 2003;91:23-31.
    • (2003) Chem Eng J , vol.91 , pp. 23-31
    • Rusu, I.1    Cormier, J.-M.2
  • 14
    • 0024092416 scopus 로고
    • Multifunktionale reaktoren fdr die heterogene katalyse
    • Agar DW, Ruppel W. Multifunktionale reaktoren fdr die heterogene katalyse. Chem Eng Technol. 1988;60:731-741.
    • (1988) Chem Eng Technol , vol.60 , pp. 731-741
    • Agar, D.W.1    Ruppel, W.2
  • 15
    • 0026878412 scopus 로고
    • Multifunctional reactors
    • Westerterp KR. Multifunctional reactors. Chem Eng Sci. 1992;47: 2195-2206.
    • (1992) Chem Eng Sci , vol.47 , pp. 2195-2206
    • Westerterp, K.R.1
  • 16
    • 0033134196 scopus 로고    scopus 로고
    • Multifunctional reactors: Old preconceptions and new dimensions
    • Agar DW. Multifunctional reactors: old preconceptions and new dimensions. Chem Eng Sci. 1999:54:1299-1310.
    • (1999) Chem Eng Sci , vol.54 , pp. 1299-1310
    • Agar, D.W.1
  • 17
    • 0037092603 scopus 로고    scopus 로고
    • Reactive separations: More ways to skin a cat
    • Krishna R. Reactive separations: more ways to skin a cat. Chem. Eng. Sci. 2002;57:1491-1504.
    • (2002) Chem. Eng. Sci , vol.57 , pp. 1491-1504
    • Krishna, R.1
  • 18
    • 84984085332 scopus 로고
    • Kinetics of the methane steam reaction
    • Akers WW, Camp DP. Kinetics of the methane steam reaction. AIChE J. 1955;l:471-475.
    • (1955) AIChE J , vol.50 , pp. 471-475
    • Akers, W.W.1    Camp, D.P.2
  • 20
    • 0037972398 scopus 로고
    • Kinetics of the reaction of methane with steam on the surface of nickel
    • Bodrov NM, Apelbaum LO, Temkin MI. Kinetics of the reaction of methane with steam on the surface of nickel. Kinetics Catal. 1964;5:614-621.
    • (1964) Kinetics Catal , vol.5 , pp. 614-621
    • Bodrov, N.M.1    Apelbaum, L.O.2    Temkin, M.I.3
  • 21
    • 0034246384 scopus 로고    scopus 로고
    • Micro-kinetic analysis and Monte Carlo simulation in methane partial oxidation into synthesis gas
    • Yang WS, Xiang HW, Li YW, Sun YH. Micro-kinetic analysis and Monte Carlo simulation in methane partial oxidation into synthesis gas. Catal Today. 2000;61:237-242.
    • (2000) Catal Today , vol.61 , pp. 237-242
    • Yang, W.S.1    Xiang, H.W.2    Li, Y.W.3    Sun, Y.H.4
  • 23
    • 0018943730 scopus 로고
    • Methane steam reforming
    • Van Hook JP. Methane steam reforming. Catal Rev Sci Eng. 1980;21:1-51.
    • (1980) Catal Rev Sci Eng , vol.21 , pp. 1-51
    • Van Hook, J.P.1
  • 24
    • 37049124684 scopus 로고
    • Reaction mechanism of steam reforming
    • Schnell CR. Reaction mechanism of steam reforming. J Chem Soc B. 1970;158-163.
    • (1970) J Chem Soc B , pp. 158-163
    • Schnell, C.R.1
  • 25
    • 37049121786 scopus 로고
    • Mechanism of the steam reforming of methane over a coprecipitated nickel-alumina catalyst
    • Ross RH, Steel MCF. Mechanism of the steam reforming of methane over a coprecipitated nickel-alumina catalyst. J Chem Soc Faraday Trans I. 1973;69:11-21.
    • (1973) J Chem Soc Faraday Trans I , vol.69 , pp. 11-21
    • Ross, R.H.1    Steel, M.C.F.2
  • 26
    • 0000144292 scopus 로고
    • Kinetics of the steam reforming of methane with nickel, iron and iron-nickel alloys as catalysts
    • Munsted P, Grabke HJ. Kinetics of the steam reforming of methane with nickel, iron and iron-nickel alloys as catalysts. J Catal. 1981;72:279-287.
    • (1981) J Catal , vol.72 , pp. 279-287
    • Munsted, P.1    Grabke, H.J.2
  • 27
    • 0024303638 scopus 로고
    • Methane steam reforming, methanation and wate-gas shift. I. Intrinsic kinetics
    • Xu J, Froment GF. Methane steam reforming, methanation and wate-gas shift. I. Intrinsic kinetics. AIChE J. 1989;35:88-96.
    • (1989) AIChE J , vol.35 , pp. 88-96
    • Xu, J.1    Froment, G.F.2
  • 28
    • 0024305069 scopus 로고
    • Methane steam reforming. II. Diffusional limitations and reactor simulation
    • Xu J, Froment GF. Methane steam reforming. II. Diffusional limitations and reactor simulation. AIChE.J. 1989;35:97-103.
    • (1989) AIChE.J , vol.35 , pp. 97-103
    • Xu, J.1    Froment, G.F.2
  • 31
    • 0000939929 scopus 로고    scopus 로고
    • Transient isotopic studies and microkinetic modeling of methane reforming over nickel catalysts
    • Aparicio LM. Transient isotopic studies and microkinetic modeling of methane reforming over nickel catalysts. J Catal. 1997;165: 262-274.
    • (1997) J Catal , vol.165 , pp. 262-274
    • Aparicio, L.M.1
  • 33
    • 20544442659 scopus 로고    scopus 로고
    • Is the water-gas shift reaction on Pt simple? Computer-aided microkinetic model reduction, lumped rate expression, and rate determining step
    • Mhadeshwar AB, Vlachos DG. Is the water-gas shift reaction on Pt simple? Computer-aided microkinetic model reduction, lumped rate expression, and rate determining step. Catal Today. 2005;105: 162-172.
    • (2005) Catal Today , vol.105 , pp. 162-172
    • Mhadeshwar, A.B.1    Vlachos, D.G.2
  • 34
    • 32644484370 scopus 로고    scopus 로고
    • A review of multiscale analysis: Examples from systems biology, materials engineering, and other fluid-surface interacting systems
    • 30:l-61
    • Vlachos DG. A review of multiscale analysis: Examples from systems biology, materials engineering, and other fluid-surface interacting systems. Adv Chem Eng. 2005;30:l-61.
    • (2005) Adv Chem Eng
    • Vlachos, D.G.1
  • 35
    • 0031341476 scopus 로고    scopus 로고
    • Monte Carlo simulation of kinetics and chain length distributions in living free-radical polymerization
    • He J, Zhang H, Chen J, Yang Y. Monte Carlo simulation of kinetics and chain length distributions in living free-radical polymerization. Macromolecules. 1997;30:8010-8018.
    • (1997) Macromolecules , vol.30 , pp. 8010-8018
    • He, J.1    Zhang, H.2    Chen, J.3    Yang, Y.4
  • 36
    • 0035829928 scopus 로고    scopus 로고
    • Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations
    • Resat H, Wiley HS, Dixon DA. Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations. J Chem Phys. 2001;105:11026-11034.
    • (2001) J Chem Phys , vol.105 , pp. 11026-11034
    • Resat, H.1    Wiley, H.S.2    Dixon, D.A.3
  • 38
    • 0035933994 scopus 로고    scopus 로고
    • Approximate accelerated stochastic simulation of chemically reacting systems
    • Gillespie DT. Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys. 2001;115:1716-1733.
    • (2001) J Chem Phys , vol.115 , pp. 1716-1733
    • Gillespie, D.T.1
  • 39
    • 22944469465 scopus 로고    scopus 로고
    • Binomial distribution based τ-leap accelerated stochastic simulation
    • Chatterjee A, Vlachos DG, Katsoulakis MA. Binomial distribution based τ-leap accelerated stochastic simulation. J Chem Phys. 2005; 122:241121-241127.
    • (2005) J Chem Phys , vol.122 , pp. 241121-241127
    • Chatterjee, A.1    Vlachos, D.G.2    Katsoulakis, M.A.3
  • 40
    • 3142543968 scopus 로고    scopus 로고
    • Binomial leap methods for simulating stochastic chemical kinetics
    • Tian T, Burrage K. Binomial leap methods for simulating stochastic chemical kinetics. J Chem Phys. 2004;121:10356-10364.
    • (2004) J Chem Phys , vol.121 , pp. 10356-10364
    • Tian, T.1    Burrage, K.2
  • 41
    • 0037426193 scopus 로고    scopus 로고
    • Multiresolution analysis in statistical mechanics. I. Using wavelets to calculate thermo-dynamic properties
    • Ismail AE, Rutledge GC, Stephanopoulos G. Multiresolution analysis in statistical mechanics. I. Using wavelets to calculate thermo-dynamic properties.J Chem Phys. 2003;118:4414-4423.
    • (2003) J Chem Phys , vol.118 , pp. 4414-4423
    • Ismail, A.E.1    Rutledge, G.C.2    Stephanopoulos, G.3
  • 42
    • 45849155035 scopus 로고    scopus 로고
    • Spatially adaptive grand canonical Monte Carlo simulations
    • Chatterjee A, Katsoulakis MA, Vlachos DG. Spatially adaptive grand canonical Monte Carlo simulations. Phy Rev E. 2005;71: 26702-26707.
    • (2005) Phy Rev E , vol.71 , pp. 26702-26707
    • Chatterjee, A.1    Katsoulakis, M.A.2    Vlachos, D.G.3
  • 43
    • 15944368965 scopus 로고    scopus 로고
    • Net-event kinetic Monte Carlo for overcoming stiffness in spatially homogeneous and distributed systems
    • Snyder MA, Chatterjee A, Vlachos DG. Net-event kinetic Monte Carlo for overcoming stiffness in spatially homogeneous and distributed systems. Comput Chem Eng. 2005;29:701-712.
    • (2005) Comput Chem Eng , vol.29 , pp. 701-712
    • Snyder, M.A.1    Chatterjee, A.2    Vlachos, D.G.3
  • 44
    • 1542749043 scopus 로고    scopus 로고
    • Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors
    • Abashar MEE. Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors. Int J Hydrogen Energy. 2004;29:799-808.
    • (2004) Int J Hydrogen Energy , vol.29 , pp. 799-808
    • Abashar, M.E.E.1
  • 45
    • 58149323545 scopus 로고
    • Limiting conversions of dehydrogenation in palladium membrane reactors
    • Itoh N. Limiting conversions of dehydrogenation in palladium membrane reactors. Catal Today. 1995;25:351-356.
    • (1995) Catal Today , vol.25 , pp. 351-356
    • Itoh, N.1
  • 46
    • 0026131333 scopus 로고
    • Separation of hydrogen through palladium thin film supported on a porous glass tube
    • Uemiya S, Sato N, Ando H, Kude Y, Matsuda T, Kikuchi E. Separation of hydrogen through palladium thin film supported on a porous glass tube. J Membr Sci. 1991;56:303-313.
    • (1991) J Membr Sci , vol.56 , pp. 303-313
    • Uemiya, S.1    Sato, N.2    Ando, H.3    Kude, Y.4    Matsuda, T.5    Kikuchi, E.6
  • 47
    • 0032908660 scopus 로고    scopus 로고
    • A new preparation technique for Pd/alumina membranes with enhanced stability at high temperatures
    • Paglieri SN, Foo KY, Way JD, Collins IP, Harper-Nixon DL. A new preparation technique for Pd/alumina membranes with enhanced stability at high temperatures. Ind Eng Chem Res. 1999;38: 1925-1936.
    • (1999) Ind Eng Chem Res , vol.38 , pp. 1925-1936
    • Paglieri, S.N.1    Foo, K.Y.2    Way, J.D.3    Collins, I.P.4    Harper-Nixon, D.L.5
  • 48
    • 0242721369 scopus 로고    scopus 로고
    • Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium-copper membranes
    • Roa F, Way JD. Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium-copper membranes. Ind Eng Chem Res. 2003;42:5827-5835.
    • (2003) Ind Eng Chem Res , vol.42 , pp. 5827-5835
    • Roa, F.1    Way, J.D.2
  • 49
    • 26944470352 scopus 로고    scopus 로고
    • 2/MPSS composite membrane for hydrogen separation and steam reforming of methane
    • 2/MPSS composite membrane for hydrogen separation and steam reforming of methane. Sep Purif Technol. 2005;46:1.
    • (2005) Sep Purif Technol , vol.46 , pp. 1
    • Tong, J.1    Matsumura, Y.2    Suda, H.3    Haraya, K.4
  • 50
    • 0037863133 scopus 로고    scopus 로고
    • Characterization of ceramicmetal composite hydrogen separation membranes consisting of barium oxide, cerium oxide, yttrium oxide and palladium
    • Siriwardane RV, Poston JA. Characterization of ceramicmetal composite hydrogen separation membranes consisting of barium oxide, cerium oxide, yttrium oxide and palladium. Appl Surf Sci. 2003;217:43-49.
    • (2003) Appl Surf Sci , vol.217 , pp. 43-49
    • Siriwardane, R.V.1    Poston, J.A.2
  • 51
    • 34248580640 scopus 로고    scopus 로고
    • State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries
    • Ritter JA, Ebner AD. State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries. Sep Sci Technol. 2007;42:1123-1193.
    • (2007) Sep Sci Technol , vol.42 , pp. 1123-1193
    • Ritter, J.A.1    Ebner, A.D.2
  • 52
    • 0042424609 scopus 로고    scopus 로고
    • Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5CO0.8FeO.2O3-delta membrane reactor
    • Wang HH, Cong Y, Yang WS. Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5CO0.8FeO.2O3-delta membrane reactor. Catal Today. 2003;82:157-166.
    • (2003) Catal Today , vol.82 , pp. 157-166
    • Wang, H.H.1    Cong, Y.2    Yang, W.S.3
  • 53
    • 0035482067 scopus 로고    scopus 로고
    • Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5-Co0.8Fe0.2O3-delta oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas
    • Shao ZP, Xiong GX, Dong H, Yang WH, Lin LW. Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5-Co0.8Fe0.2O3-delta oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Sep Purif Technol. 2001; 25:97-116.
    • (2001) Sep Purif Technol , vol.25 , pp. 97-116
    • Shao, Z.P.1    Xiong, G.X.2    Dong, H.3    Yang, W.H.4    Lin, L.W.5
  • 56
    • 0042925338 scopus 로고    scopus 로고
    • Dense ceramic membranes for methane conversion
    • Bouwmeester HJM. Dense ceramic membranes for methane conversion. Catal Today. 2003;82:141-150.
    • (2003) Catal Today , vol.82 , pp. 141-150
    • Bouwmeester, H.J.M.1
  • 57
    • 4944227560 scopus 로고    scopus 로고
    • The use of dense mixed ionic and electronic conducting membranes for chemical production
    • Thursfield A, Metcalfe IS. The use of dense mixed ionic and electronic conducting membranes for chemical production. J Mater Chem Lett. 2004;14:2475-2485.
    • (2004) J Mater Chem Lett , vol.14 , pp. 2475-2485
    • Thursfield, A.1    Metcalfe, I.S.2
  • 58
    • 0035671024 scopus 로고    scopus 로고
    • Catalytic membrane reaction for methane steam reforming using porous silica membranes
    • Tsuru T, Tsuge T, Kubota S. Catalytic membrane reaction for methane steam reforming using porous silica membranes. Sep Sci Technol. 2001;36:3721-3736.
    • (2001) Sep Sci Technol , vol.36 , pp. 3721-3736
    • Tsuru, T.1    Tsuge, T.2    Kubota, S.3
  • 59
    • 1842481174 scopus 로고    scopus 로고
    • Stability improvement of Rh/gamma-A12O3 catalyst layer by ceria doping for steam reforming in an integrated catalytic membrane reactor system
    • Kurungot S, Yamaguchi T. Stability improvement of Rh/gamma-A12O3 catalyst layer by ceria doping for steam reforming in an integrated catalytic membrane reactor system. Catal Lett. 2004;92: 181-187.
    • (2004) Catal Lett , vol.92 , pp. 181-187
    • Kurungot, S.1    Yamaguchi, T.2
  • 60
    • 0037367527 scopus 로고    scopus 로고
    • Rh/-A12O3 catalytic layer integrated with sol-gel synthesized microporous silica membrane for compact membrane reactor applications
    • Kurungot S, Yamaguchi T, Nakao S. Rh/-A12O3 catalytic layer integrated with sol-gel synthesized microporous silica membrane for compact membrane reactor applications. Catal Lett. 2003;86: 273-278.
    • (2003) Catal Lett , vol.86 , pp. 273-278
    • Kurungot, S.1    Yamaguchi, T.2    Nakao, S.3
  • 61
    • 0000292109 scopus 로고    scopus 로고
    • Supported nickel catalysts for carbon dioxide reforming of methane in plug flow and membrane reactors
    • Prabhu AK, Radhakrishnan R, Oyama ST. Supported nickel catalysts for carbon dioxide reforming of methane in plug flow and membrane reactors. Appl Catal A: Gen. 1999;183:241-252.
    • (1999) Appl Catal A: Gen , vol.183 , pp. 241-252
    • Prabhu, A.K.1    Radhakrishnan, R.2    Oyama, S.T.3
  • 62
    • 0033246921 scopus 로고    scopus 로고
    • Development of a hydrogen selective ceramic membrane and its application for the conversion of greenhouse gases
    • Prabhu AK, Oyama ST. Development of a hydrogen selective ceramic membrane and its application for the conversion of greenhouse gases. Chem Lett. 1999;213-214.
    • (1999) Chem Lett , pp. 213-214
    • Prabhu, A.K.1    Oyama, S.T.2
  • 63
    • 0034692132 scopus 로고    scopus 로고
    • Highly hydrogen selective ceramic membranes: Application to the transformation of greenhouse gases
    • Prabhu AK, Oyama ST. Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases. J Membr Sci. 2000;176:233-248.
    • (2000) J Membr Sci , vol.176 , pp. 233-248
    • Prabhu, A.K.1    Oyama, S.T.2
  • 64
    • 0042527462 scopus 로고    scopus 로고
    • Testing of polymer membranes for the selective permeability of hydrogen
    • Orme CJ, Stone ML, Benson MT, Peterson ES. Testing of polymer membranes for the selective permeability of hydrogen. Sep Sci Technol. 2003;38:3225-3238.
    • (2003) Sep Sci Technol , vol.38 , pp. 3225-3238
    • Orme, C.J.1    Stone, M.L.2    Benson, M.T.3    Peterson, E.S.4
  • 65
    • 7544230834 scopus 로고    scopus 로고
    • Heterogeneous membranes based on polymeric adsorbents for separation of small molecules
    • Hradil J, Krystl V. Heterogeneous membranes based on polymeric adsorbents for separation of small molecules. React Funct Polym. 2004;61:303-313.
    • (2004) React Funct Polym , vol.61 , pp. 303-313
    • Hradil, J.1    Krystl, V.2
  • 66
    • 27744499158 scopus 로고    scopus 로고
    • Methane steam reforming modeling in a palladium membrane reactor
    • Fernandes FAN, Soars AB. Methane steam reforming modeling in a palladium membrane reactor. Fuel. 2006;85:569-573.
    • (2006) Fuel , vol.85 , pp. 569-573
    • Fernandes, F.A.N.1    Soars, A.B.2
  • 67
    • 0030615997 scopus 로고    scopus 로고
    • The fluidized bed membrane reactor for steam methane reforming: Model verification and parametric study
    • Adris AM, Lim CJ, Grace JR. The fluidized bed membrane reactor for steam methane reforming: model verification and parametric study. Chem Eng Sci. 1997;52:1609-1622.
    • (1997) Chem Eng Sci , vol.52 , pp. 1609-1622
    • Adris, A.M.1    Lim, C.J.2    Grace, J.R.3
  • 68
    • 0028697124 scopus 로고
    • The fluidized bed membrane reactor (FBMR) system: A pilot scale experimental study
    • Adris AM, Lim CJ, Grace JR. The fluidized bed membrane reactor (FBMR) system: a pilot scale experimental study. Chem Eng Sci. 1994;49:5833-5843.
    • (1994) Chem Eng Sci , vol.49 , pp. 5833-5843
    • Adris, A.M.1    Lim, C.J.2    Grace, J.R.3
  • 69
    • 0037564976 scopus 로고    scopus 로고
    • Simulation for steam reforming of natural gas with oxygen input in a novel membrane reformer
    • Chen Z, Prasad P, Yan Y, Elnashaie SSEH. Simulation for steam reforming of natural gas with oxygen input in a novel membrane reformer. Fuel Process Technol. 2003;83:235-252.
    • (2003) Fuel Process Technol , vol.83 , pp. 235-252
    • Chen, Z.1    Prasad, P.2    Yan, Y.3    Elnashaie, S.S.E.H.4
  • 71
    • 8544279979 scopus 로고    scopus 로고
    • Methane steam reforming by microporous catalytic membrane reactors
    • Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M. Methane steam reforming by microporous catalytic membrane reactors. AIChE J. 2004;50:2794-2805.
    • (2004) AIChE J , vol.50 , pp. 2794-2805
    • Tsuru, T.1    Yamaguchi, K.2    Yoshioka, T.3    Asaeda, M.4
  • 72
    • 0037332341 scopus 로고    scopus 로고
    • Equilibrium conversion for a Pd-based membrane reactor. Dependence on the temperature and pressure
    • Marigliano G, Barbieri G, Drioli E. Equilibrium conversion for a Pd-based membrane reactor. Dependence on the temperature and pressure. Chem Eng Process. 2003;42:231-236.
    • (2003) Chem Eng Process , vol.42 , pp. 231-236
    • Marigliano, G.1    Barbieri, G.2    Drioli, E.3
  • 73
    • 0035795477 scopus 로고    scopus 로고
    • Conversion-temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: Methane steam reforming
    • Barbieri G, Marigliano G, Perri G, Drioli E. Conversion-temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: methane steam reforming. Ind Eng Chem Res. 2001;40:2017-2026.
    • (2001) Ind Eng Chem Res , vol.40 , pp. 2017-2026
    • Barbieri, G.1    Marigliano, G.2    Perri, G.3    Drioli, E.4
  • 74
    • 33748976692 scopus 로고    scopus 로고
    • Bottino A, Comite A, Capannelli G, Di Felice R, Pinacci P. Steam reforming of methane in equilibrium membrane reactors for integration in power cycles. Catal Today. 2006;118:214-222.
    • Bottino A, Comite A, Capannelli G, Di Felice R, Pinacci P. Steam reforming of methane in equilibrium membrane reactors for integration in power cycles. Catal Today. 2006;118:214-222.
  • 75
    • 33947581666 scopus 로고    scopus 로고
    • Simulation of large-scale membrane reformers by a two-dimensional model
    • Falco MD, Paola LD, Marrelli L, Nardella P. Simulation of large-scale membrane reformers by a two-dimensional model. Chem Eng J. 2007;128:115-125.
    • (2007) Chem Eng J , vol.128 , pp. 115-125
    • Falco, M.D.1    Paola, L.D.2    Marrelli, L.3    Nardella, P.4
  • 76
    • 33746784726 scopus 로고    scopus 로고
    • Limit conversion of a palladium membrane reactor using counter-current sweep gas on methane steam reforming
    • l-3:708-709
    • Hara S, Barbieri G, Drioli E. Limit conversion of a palladium membrane reactor using counter-current sweep gas on methane steam reforming. Desalination. 2006;200(l-3):708-709.
    • (2006) Desalination , pp. 200
    • Hara, S.1    Barbieri, G.2    Drioli, E.3
  • 78
    • 0030267144 scopus 로고    scopus 로고
    • Sorption-enhanced reaction process
    • Carvil BT, Hufton JR, Sircar S. Sorption-enhanced reaction process. AIChE J. 1996;42:2765-2772.
    • (1996) AIChE J , vol.42 , pp. 2765-2772
    • Carvil, B.T.1    Hufton, J.R.2    Sircar, S.3
  • 79
    • 25144456620 scopus 로고    scopus 로고
    • New pressure swing adsorption cycles for carbon dioxide sequestration
    • Reynolds SP, Ebner AD, Ritter JA. New pressure swing adsorption cycles for carbon dioxide sequestration. Adsorption. 2005,531-536.
    • (2005) Adsorption , pp. 531-536
    • Reynolds, S.P.1    Ebner, A.D.2    Ritter, J.A.3
  • 80
    • 34547195830 scopus 로고    scopus 로고
    • Novel thermal-swing sorption-enhanced reaction process concept for hydrogen production by low-temperature steam-methane reforming
    • Lee KB, Beaver MG, Caram HS, Sircar S. Novel thermal-swing sorption-enhanced reaction process concept for hydrogen production by low-temperature steam-methane reforming. Ind Eng Chem Res. 2007;46:5003-5014.
    • (2007) Ind Eng Chem Res , vol.46 , pp. 5003-5014
    • Lee, K.B.1    Beaver, M.G.2    Caram, H.S.3    Sircar, S.4
  • 81
    • 0021158095 scopus 로고
    • Catalytic steam reforming
    • Anderson JR, Boudart M, editors, Berlin: Springer
    • Rostrup-Nielsen JR. Catalytic steam reforming. In: Anderson JR, Boudart M, editors. Catalysis Science and Technology, Vol. 4. Berlin: Springer, 1984;1-117
    • (1984) Catalysis Science and Technology , vol.4 , pp. 1-117
    • Rostrup-Nielsen, J.R.1
  • 82
    • 0004329039 scopus 로고
    • Hydrogen production.
    • US. Pat. 1,938,202
    • Williams R. Hydrogen production. US. Pat. 1,938,202, 1933.
    • (1933)
    • Williams, R.1
  • 83
    • 0028695621 scopus 로고
    • Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen
    • Han C, Harrison DP, Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen. Chem Eng Sci. 1994;49:5875-5883.
    • (1994) Chem Eng Sci , vol.49 , pp. 5875-5883
    • Han, C.1    Harrison, D.P.2
  • 84
    • 0004650753 scopus 로고    scopus 로고
    • Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon.
    • U.S. Pat. 6,103,143
    • Sircar S, Hufton JR, Nataraj S. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon. U.S. Pat. 6,103,143,2000.
    • (2000)
    • Sircar, S.1    Hufton, J.R.2    Nataraj, S.3
  • 85
    • 60749127969 scopus 로고    scopus 로고
    • Production of carbon monoxide.
    • U.S. Pat. 6,592,836 B2, 2003
    • Hufton JR, Nataraj S. Production of carbon monoxide. U.S. Pat. 6,592,836 B2, 2003.
    • Hufton, J.R.1    Nataraj, S.2
  • 86
    • 2542588483 scopus 로고    scopus 로고
    • Process for operating equilibrium controlled reactions.
    • U.S. Pat. 6,303,092 B1, 2001
    • Anand M, Sircar S, Carvill BT. Process for operating equilibrium controlled reactions. U.S. Pat. 6,303,092 B1, 2001.
    • Anand, M.1    Sircar, S.2    Carvill, B.T.3
  • 87
    • 0035365093 scopus 로고    scopus 로고
    • Production of hydrogen by cyclic sorption enhanced reaction process
    • Waldron WE, Hufton JR, Sircar S. Production of hydrogen by cyclic sorption enhanced reaction process. AIChE J. 2001;47: 1477-1479.
    • (2001) AIChE J , vol.47 , pp. 1477-1479
    • Waldron, W.E.1    Hufton, J.R.2    Sircar, S.3
  • 88
    • 34248553850 scopus 로고    scopus 로고
    • Simultaneous shift-reactive and adsorptive process at moderate temperature to produce pure hydrogen.
    • U.S. Pat. /0081614 A1, 2004
    • Ying DHS, Nataraj S, Hufton JR, Xu J, Allam RJ, Dulley SJ. Simultaneous shift-reactive and adsorptive process at moderate temperature to produce pure hydrogen. U.S. Pat. 2004/0081614 A1, 2004.
    • (2004)
    • Ying, D.H.S.1    Nataraj, S.2    Hufton, J.R.3    Xu, J.4    Allam, R.J.5    Dulley, S.J.6
  • 89
    • 0034319547 scopus 로고    scopus 로고
    • Adsorption of carbon dioxide on basic alumina at high temperatures
    • Yong Z, Mata V, Rodrigues AE. Adsorption of carbon dioxide on basic alumina at high temperatures. J Chem Eng Data. 2000;45: 1093-1095.
    • (2000) J Chem Eng Data , vol.45 , pp. 1093-1095
    • Yong, Z.1    Mata, V.2    Rodrigues, A.E.3
  • 90
    • 60749123245 scopus 로고    scopus 로고
    • Carbon dioxide adsorption of synthetic meixnerite.
    • U.S. Pat. 5,882,622
    • Easley MA, Horn WE. Carbon dioxide adsorption of synthetic meixnerite. U.S. Pat. 5,882,622, 1999.
    • (1999)
    • Easley, M.A.1    Horn, W.E.2
  • 91
    • 33646268323 scopus 로고    scopus 로고
    • Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures
    • U.S. Patent No. 6,280,503
    • Mayorga SG, Gaffney TR, Brzozowski JR, Weigel SJ. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures. U.S. Patent No. 6,280,503, 2001.
    • (2001)
    • Mayorga, S.G.1    Gaffney, T.R.2    Brzozowski, J.R.3    Weigel, S.J.4
  • 92
    • 0003889228 scopus 로고    scopus 로고
    • Carbon dioxide pressure swing adsorption process using modified alumina adsorbents.
    • US. Pat. 5,917,136
    • Gaffney TR, Golden TC, Mayorga SG, Brzozowski JR, Taylor FW. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents. US. Pat. 5,917,136, 1999.
    • (1999)
    • Gaffney, T.R.1    Golden, T.C.2    Mayorga, S.G.3    Brzozowski, J.R.4    Taylor, F.W.5
  • 93
    • 0141993442 scopus 로고    scopus 로고
    • Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate
    • Xiong R, Ida J, Lin YS. Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chem Eng Sci. 2003;58:4377-4385.
    • (2003) Chem Eng Sci , vol.58 , pp. 4377-4385
    • Xiong, R.1    Ida, J.2    Lin, Y.S.3
  • 94
    • 0037998087 scopus 로고    scopus 로고
    • Mechanism of high-temperature CO2 sorption on lithium zirconate
    • Ida JI, Lin YS. Mechanism of high-temperature CO2 sorption on lithium zirconate. Environ Sci Technol. 2003;37:1999-2004.
    • (2003) Environ Sci Technol , vol.37 , pp. 1999-2004
    • Ida, J.I.1    Lin, Y.S.2
  • 95
    • 1542572628 scopus 로고    scopus 로고
    • Synthesis and CO2 sorption properties of pure and modified lithium zirconate
    • Ida JI, Xiong R, Lin YS. Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Sep Purif Tech. 2004;36:41-51.
    • (2004) Sep Purif Tech , vol.36 , pp. 41-51
    • Ida, J.I.1    Xiong, R.2    Lin, Y.S.3
  • 96
    • 1142267445 scopus 로고    scopus 로고
    • Processing of lithium zirconate for applications in carbon dioxide separation: Structure and properties of the powders
    • Nair BN, Yamaguchi T, Kawamura H, Nakao SI, Nakagawa K. Processing of lithium zirconate for applications in carbon dioxide separation: structure and properties of the powders. J Am Ceramic Soc. 2004;87:68-74.
    • (2004) J Am Ceramic Soc , vol.87 , pp. 68-74
    • Nair, B.N.1    Yamaguchi, T.2    Kawamura, H.3    Nakao, S.I.4    Nakagawa, K.5
  • 97
    • 3042697870 scopus 로고    scopus 로고
    • Multicyclic study on the simultaneous carbonation and sulfation of high-reactivity CaO
    • Iyer MV, Gupta H, Sakadjian BB, Fan LS. Multicyclic study on the simultaneous carbonation and sulfation of high-reactivity CaO. Ind Eng Chem Res. 2004;43:3939-3947.
    • (2004) Ind Eng Chem Res , vol.43 , pp. 3939-3947
    • Iyer, M.V.1    Gupta, H.2    Sakadjian, B.B.3    Fan, L.S.4
  • 98
    • 0037036811 scopus 로고    scopus 로고
    • Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas
    • Gupta H, Fan LS. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res. 2002;41:4035-4042.
    • (2002) Ind Eng Chem Res , vol.41 , pp. 4035-4042
    • Gupta, H.1    Fan, L.S.2
  • 99
    • 0034685599 scopus 로고    scopus 로고
    • 2 adsorption on hydrotalcite adsorbent
    • 2 adsorption on hydrotalcite adsorbent. Chem Eng Sci. 2000;55:3461-3474
    • (2000) Chem Eng Sci , vol.55 , pp. 3461-3474
    • Ding, Y.1    Alpay, E.2
  • 100
    • 0036883246 scopus 로고    scopus 로고
    • Simulation of five step one bed sorption enhanced reaction process
    • Xiu G, Soares JL, Li P, Rodrigues AE. Simulation of five step one bed sorption enhanced reaction process. AIChE J. 2002;48:2817-2832.
    • (2002) AIChE J , vol.48 , pp. 2817-2832
    • Xiu, G.1    Soares, J.L.2    Li, P.3    Rodrigues, A.E.4
  • 101
    • 1642400568 scopus 로고    scopus 로고
    • Adsorption enhanced steam methane reforming with intrapartile diffusion limitations
    • Xiu G, Li P, Rodrigues AE. Adsorption enhanced steam methane reforming with intrapartile diffusion limitations. Chem Eng J. 2003;95:83-93.
    • (2003) Chem Eng J , vol.95 , pp. 83-93
    • Xiu, G.1    Li, P.2    Rodrigues, A.E.3
  • 102
    • 0041621553 scopus 로고    scopus 로고
    • New generalized strategy for improving sorption-enhanced reaction process
    • Xiu GH, Li P, Rodrigues AE. New generalized strategy for improving sorption-enhanced reaction process. Chem Eng Sci. 2003;58:3425-3437.
    • (2003) Chem Eng Sci , vol.58 , pp. 3425-3437
    • Xiu, G.H.1    Li, P.2    Rodrigues, A.E.3
  • 103
    • 20744451456 scopus 로고    scopus 로고
    • Hydrogen production from steam methane reforming coupled with in situ CO2 capture: Conceptual parametric study
    • Wang Y-N, Rodrigues AE. Hydrogen production from steam methane reforming coupled with in situ CO2 capture: conceptual parametric study. Fuel. 2005;84(14-15):1778-1789.
    • (2005) Fuel , vol.84 , Issue.14-15 , pp. 1778-1789
    • Wang, Y.-N.1    Rodrigues, A.E.2
  • 106
    • 27744596668 scopus 로고    scopus 로고
    • Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent: Sorption kinetics and reactor simulation
    • Ochoa-Fernandez E, Rusten HK, Jakobsen HA, Running M, Holmen A, Chen D. Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent: sorption kinetics and reactor simulation. Catal Today. 2005;106:41-46.
    • (2005) Catal Today , vol.106 , pp. 41-46
    • Ochoa-Fernandez, E.1    Rusten, H.K.2    Jakobsen, H.A.3    Running, M.4    Holmen, A.5    Chen, D.6
  • 108
    • 34047137100 scopus 로고    scopus 로고
    • High-temperature attrition of sorbents and a catalyst for sorption-enhanced steam methane reforming in a fluidized bed environment
    • Johnsen K, Grace JR. High-temperature attrition of sorbents and a catalyst for sorption-enhanced steam methane reforming in a fluidized bed environment. Powder Teehnol. 2007;173:200-202.
    • (2007) Powder Teehnol , vol.173 , pp. 200-202
    • Johnsen, K.1    Grace, J.R.2
  • 109
    • 10044230556 scopus 로고    scopus 로고
    • Enhanced catalyst performance using integrated structured functionalities
    • Grunewald M, Agar DW. Enhanced catalyst performance using integrated structured functionalities. Chem Eng Sci. 2004;59: 5519-5526.
    • (2004) Chem Eng Sci , vol.59 , pp. 5519-5526
    • Grunewald, M.1    Agar, D.W.2
  • 110
    • 42149149832 scopus 로고    scopus 로고
    • Multi-scale characterization framework for sorption enhanced reaction processes
    • Kapil A, Bhat S, Sadhukhan J. Multi-scale characterization framework for sorption enhanced reaction processes. AIChE J. 2008;54: 1025-1036.
    • (2008) AIChE J , vol.54 , pp. 1025-1036
    • Kapil, A.1    Bhat, S.2    Sadhukhan, J.3
  • 111
    • 33645647254 scopus 로고    scopus 로고
    • Performance enhancement of steam methane reforming using tubular packed bed microreactors and dilution by adsorbent
    • Rajasree R, Kumar VR, Kulkarni BD. Performance enhancement of steam methane reforming using tubular packed bed microreactors and dilution by adsorbent. Energy Fuels. 2006;20:463-472.
    • (2006) Energy Fuels , vol.20 , pp. 463-472
    • Rajasree, R.1    Kumar, V.R.2    Kulkarni, B.D.3
  • 112
    • 0033167187 scopus 로고    scopus 로고
    • A new reactor concept for endothermic high-temperature reactions
    • Frauhammer J, Eigenberger G, Hippel LV, Arntz D. A new reactor concept for endothermic high-temperature reactions. Chem Eng Sci. 1999;54;3661-3670.
    • (1999) Chem Eng Sci , vol.54 , pp. 3661-3670
    • Frauhammer, J.1    Eigenberger, G.2    Hippel, L.V.3    Arntz, D.4
  • 113
    • 0001304298 scopus 로고    scopus 로고
    • A Novel compact steam reformer for fuel cells with heat generation by catalytic combustion augmented by induction heating
    • Polman EA, Kinderen JMD, Thuis FM. A Novel compact steam reformer for fuel cells with heat generation by catalytic combustion augmented by induction heating. Catal Today. 1999;47:347-351.
    • (1999) Catal Today , vol.47 , pp. 347-351
    • Polman, E.A.1    Kinderen, J.M.D.2    Thuis, F.M.3
  • 114
    • 33750632698 scopus 로고    scopus 로고
    • From seconds to milliseconds to microseconds through tailored micro-channel reactor design of a steam methane reformer
    • Tonkovich ALY, Yang B, Perry ST, Fitzgerald SP, Wang Y. From seconds to milliseconds to microseconds through tailored micro-channel reactor design of a steam methane reformer. Catal Today. 2007;120:21-29.
    • (2007) Catal Today , vol.120 , pp. 21-29
    • Tonkovich, A.L.Y.1    Yang, B.2    Perry, S.T.3    Fitzgerald, S.P.4    Wang, Y.5
  • 115
    • 0037135366 scopus 로고    scopus 로고
    • Millisecond catalytic wall reactors: Dehydrogenation of ethane
    • Venkataraman K, Redenius JM, Schmidt LD. Millisecond catalytic wall reactors: dehydrogenation of ethane. Chem Eng Sci. 2002;57: 2335-2343.
    • (2002) Chem Eng Sci , vol.57 , pp. 2335-2343
    • Venkataraman, K.1    Redenius, J.M.2    Schmidt, L.D.3
  • 116
    • 0038212065 scopus 로고
    • Apparatus and method for preparing reformed gas by means of elec-troless plating.
    • US. Pat. 5,67,865
    • Igarashi A, Fukuhara C, Takeshita S, Nishino C, Hanawa M. Apparatus and method for preparing reformed gas by means of elec-troless plating. US. Pat. 5,67,865, 1992.
    • (1992)
    • Igarashi, A.1    Fukuhara, C.2    Takeshita, S.3    Nishino, C.4    Hanawa, M.5
  • 117
    • 22144454316 scopus 로고    scopus 로고
    • Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor
    • Galvita V, Sundmacher K. Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor. Appl Catal A : Gen. 2005;289:121-127.
    • (2005) Appl Catal A : Gen , vol.289 , pp. 121-127
    • Galvita, V.1    Sundmacher, K.2
  • 119
    • 0141684619 scopus 로고    scopus 로고
    • Catalytic combustion assisted methane steam reforming in a catalytic plate reactor
    • Zanfir M, Gavriilidis A. Catalytic combustion assisted methane steam reforming in a catalytic plate reactor. Chem Eng Sci. 2003; 58:3947-3960.
    • (2003) Chem Eng Sci , vol.58 , pp. 3947-3960
    • Zanfir, M.1    Gavriilidis, A.2
  • 120
    • 33845288007 scopus 로고    scopus 로고
    • Analysis of chemical-reaction-coupled mass and heat transport phenomena in a methane reformer duct for PEMFCs
    • Yuan J, Ren F, Sunden B. Analysis of chemical-reaction-coupled mass and heat transport phenomena in a methane reformer duct for PEMFCs. Int J Heat Mass Transfer. 2007;50:687-701.
    • (2007) Int J Heat Mass Transfer , vol.50 , pp. 687-701
    • Yuan, J.1    Ren, F.2    Sunden, B.3
  • 121
    • 0037809382 scopus 로고    scopus 로고
    • Optimization of a fuel cell system using process integration techniques
    • Godat J, Marechal F. Optimization of a fuel cell system using process integration techniques. J Power Sources. 2003;118:411-423.
    • (2003) J Power Sources , vol.118 , pp. 411-423
    • Godat, J.1    Marechal, F.2
  • 122
    • 33750935088 scopus 로고    scopus 로고
    • Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor
    • Seo Y-S, Seo D-J, Seo Y-T, Yoon W-L. Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor. J Power Sources. 2006;161:1208-1216.
    • (2006) J Power Sources , vol.161 , pp. 1208-1216
    • Seo, Y.-S.1    Seo, D.-J.2    Seo, Y.-T.3    Yoon, W.-L.4
  • 123
    • 24344439243 scopus 로고    scopus 로고
    • Effects of microreactor wall heat conduction on the reforming process of methane
    • Stutz MJ, Poulikakos D. Effects of microreactor wall heat conduction on the reforming process of methane. Chem Engin Sci. 2005;60:6983-6997.
    • (2005) Chem Engin Sci , vol.60 , pp. 6983-6997
    • Stutz, M.J.1    Poulikakos, D.2
  • 124
    • 33646479826 scopus 로고    scopus 로고
    • Optimization of methane reforming in a microreactor-effects of catalyst loading and geometry
    • Stutz MJ, Hotz N, Poulikakos D. Optimization of methane reforming in a microreactor-effects of catalyst loading and geometry. Chem Eng Sci. 2006;61:4027-4040.
    • (2006) Chem Eng Sci , vol.61 , pp. 4027-4040
    • Stutz, M.J.1    Hotz, N.2    Poulikakos, D.3
  • 125
    • 27744514218 scopus 로고    scopus 로고
    • Heterogeneous reactor model for steam reforming of methane in a microchannel reactor with micro-structured catalysts
    • Cao C, Wang Y, Rozmiarek RT. Heterogeneous reactor model for steam reforming of methane in a microchannel reactor with micro-structured catalysts. Catal Today. 2005;110:92-97.
    • (2005) Catal Today , vol.110 , pp. 92-97
    • Cao, C.1    Wang, Y.2    Rozmiarek, R.T.3
  • 126
    • 33846374728 scopus 로고    scopus 로고
    • Hydrogen production by coupled catalytic partial oxidation and steam methane reforming at elevated pressure and temperature
    • Chen L, Hong Q, Lin J, Dautzenberg FM. Hydrogen production by coupled catalytic partial oxidation and steam methane reforming at elevated pressure and temperature. J Power Sources. 2007;164:803-808.
    • (2007) J Power Sources , vol.164 , pp. 803-808
    • Chen, L.1    Hong, Q.2    Lin, J.3    Dautzenberg, F.M.4
  • 127
    • 34249885864 scopus 로고    scopus 로고
    • Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization
    • Barrio VL, Schaub G, Rohde M, Rabe S, Vogel F, Cambra JF, Arias PL, Guemez MB, Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization. Int J Hydrogen Energy. 2007;32:1421-1428.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 1421-1428
    • Barrio, V.L.1    Schaub, G.2    Rohde, M.3    Rabe, S.4    Vogel, F.5    Cambra, J.F.6    Arias, P.L.7    Guemez, M.B.8
  • 128
    • 0035929065 scopus 로고    scopus 로고
    • Syngas production via methane steam reforming with oxygen: Plasma reactors versus chemical reactors
    • Cormier JM, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D: Appl Phys. 2001;34:2798-2803.
    • (2001) J Phys D: Appl Phys , vol.34 , pp. 2798-2803
    • Cormier, J.M.1    Rusu, I.2
  • 130
    • 0038692412 scopus 로고    scopus 로고
    • Hydrogen generation from water, methane, and methanol with nonthermal plasma
    • Kabashitna H, Einaga H, Futamura S. Hydrogen generation from water, methane, and methanol with nonthermal plasma, IEEE Trans Ind Appl. 2003;39:340-345.
    • (2003) IEEE Trans Ind Appl , vol.39 , pp. 340-345
    • Kabashitna, H.1    Einaga, H.2    Futamura, S.3
  • 131
    • 63449097479 scopus 로고    scopus 로고
    • Lou Y, Smith R, Sadhukhan J. Decarbonisation in energy production. In the AIChE Spring Meeting, New Orleans, 2008.
    • Lou Y, Smith R, Sadhukhan J. Decarbonisation in energy production. In the AIChE Spring Meeting, New Orleans, 2008.
  • 132
    • 57749096414 scopus 로고    scopus 로고
    • Lou Y, Smith R, Sadhukhan J. Decarbonisation in process sites. In the AIChE Spring Meeting, New Orleans, 2008.
    • Lou Y, Smith R, Sadhukhan J. Decarbonisation in process sites. In the AIChE Spring Meeting, New Orleans, 2008.
  • 133
    • 0001845273 scopus 로고    scopus 로고
    • Catalysts for the control of coking during steam reforming
    • Trimm DL. Catalysts for the control of coking during steam reforming. Catal Today. 1999;49:3-10.
    • (1999) Catal Today , vol.49 , pp. 3-10
    • Trimm, D.L.1
  • 134
    • 18844453750 scopus 로고    scopus 로고
    • Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane
    • Urasaki K, Sekine Y, Kawabe S, Kikuchi E, Matsukata M. Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane. Appl Catal A. 2005;286:23-29.
    • (2005) Appl Catal A , vol.286 , pp. 23-29
    • Urasaki, K.1    Sekine, Y.2    Kawabe, S.3    Kikuchi, E.4    Matsukata, M.5
  • 136
    • 9944244089 scopus 로고    scopus 로고
    • Catalyst design by CFD for heat transfer and reaction in steam reforming
    • Nijemeislanda M, Dixona AG, Stitt EH. Catalyst design by CFD for heat transfer and reaction in steam reforming, Chem Eng Sci. 2004;59:5185-5191.
    • (2004) Chem Eng Sci , vol.59 , pp. 5185-5191
    • Nijemeislanda, M.1    Dixona, A.G.2    Stitt, E.H.3
  • 137
    • 0037207802 scopus 로고    scopus 로고
    • Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm
    • Huang K, Zhan X-L, Chen F-Q, Lu D-W. Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm. Chem Eng Sci. 2003;58:81-87.
    • (2003) Chem Eng Sci , vol.58 , pp. 81-87
    • Huang, K.1    Zhan, X.-L.2    Chen, F.-Q.3    Lu, D.-W.4
  • 139
    • 0001062304 scopus 로고    scopus 로고
    • Development of a genetic algorithm for molecular scale catalyst design
    • McLeod AS, Johnston ME, Gladden LF. Development of a genetic algorithm for molecular scale catalyst design. J Catal. 1997;167:279-285.
    • (1997) J Catal , vol.167 , pp. 279-285
    • McLeod, A.S.1    Johnston, M.E.2    Gladden, L.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.