메뉴 건너뛰기




Volumn , Issue , 2008, Pages 631-636

Distance metric learning and support vector machines for classification of mass spectrometry proteomics data

Author keywords

Classification; Distance metric learning; Feature selection; Mass spectrum; Proteomics

Indexed keywords

CLASSIFICATION; DISTANCE METRIC LEARNING; FEATURE SELECTION; MASS SPECTRUM; PROTEOMICS;

EID: 60649093483     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2008.91     Document Type: Conference Paper
Times cited : (4)

References (28)
  • 1
    • 0037381236 scopus 로고    scopus 로고
    • Mass spectrometry-based diagnostic: The upcoming revolution in disease detection
    • Petricoin, E. and Liotta, L. (2003), Mass spectrometry-based diagnostic: the upcoming revolution in disease detection. Clin. Chem., 49, 533-534.
    • (2003) Clin. Chem , vol.49 , pp. 533-534
    • Petricoin, E.1    Liotta, L.2
  • 3
    • 34548247344 scopus 로고    scopus 로고
    • Wavelet-based procedures for proteomic mass spectrometry data processing
    • Chen, S.; Hong, D. and Shyr, Y. (2007), Wavelet-based procedures for proteomic mass spectrometry data processing, Computational Statistics & Data Analysis, 2007, vol. 52, issue 1, pages 211-220
    • (2007) Computational Statistics & Data Analysis , vol.52 , Issue.1 , pp. 211-220
    • Chen, S.1    Hong, D.2    Shyr, Y.3
  • 4
    • 3543076921 scopus 로고    scopus 로고
    • Applications of the GA/KNN method to SELDI proteomics data
    • Li, L. et al. (2004), Applications of the GA/KNN method to SELDI proteomics data. Bioinformatics, 20, 1638-1640.
    • (2004) Bioinformatics , vol.20 , pp. 1638-1640
    • Li, L.1
  • 5
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomics patterns in serum to identify ovarian cancer
    • Petricoin, E. et al. (2002), Use of proteomics patterns in serum to identify ovarian cancer. The Lancet, 359, 572-577.
    • (2002) The Lancet , vol.359 , pp. 572-577
    • Petricoin, E.1
  • 6
    • 84919841598 scopus 로고    scopus 로고
    • Pre-processing mass spectrometry data
    • Dubitzky, M, et al, eds, Kluwer, Boston, pp
    • Coombes, K. et al. (2007), Pre-processing mass spectrometry data. In Dubitzky, M., et al. (eds.), Fundamentals of Data Mining in Genomics and Proteomics. Kluwer, Boston, pp. 79-99.
    • (2007) Fundamentals of Data Mining in Genomics and Proteomics , pp. 79-99
    • Coombes, K.1
  • 7
    • 33646252011 scopus 로고    scopus 로고
    • Processing and classification of protein mass spectra
    • Hilario, M. et al. (2006), Processing and classification of protein mass spectra. Mass Spectrom. Rev., 25, 409-149.
    • (2006) Mass Spectrom. Rev , vol.25 , pp. 409-149
    • Hilario, M.1
  • 8
    • 33644953280 scopus 로고    scopus 로고
    • A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples
    • Shin, H. and Markey, M. (2006), A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples. J. Biomed. Inform. 39, 227-248.
    • (2006) J. Biomed. Inform , vol.39 , pp. 227-248
    • Shin, H.1    Markey, M.2
  • 9
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T. et al. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1
  • 10
    • 18744411077 scopus 로고    scopus 로고
    • Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform
    • Coombes, K. et al. (2005), Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform, Proteomics, Volume 5, Issue 16
    • (2005) Proteomics , vol.5 , Issue.16
    • Coombes, K.1
  • 11
    • 45749090298 scopus 로고    scopus 로고
    • SVM-RFE peak selection for cancer classification with mass spectrometry data
    • Duan, K. and Rajapakse, J.C. (2004), SVM-RFE peak selection for cancer classification with mass spectrometry data. APBC 2005: 191-200.
    • (2004) APBC 2005 , pp. 191-200
    • Duan, K.1    Rajapakse, J.C.2
  • 12
    • 0036161259 scopus 로고    scopus 로고
    • Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V.N. (2002), Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning. 200246 (1-3):389-422.
    • Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V.N. (2002), Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning. 200246 (1-3):389-422.
  • 14
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown, M.P.S. et al. (2000), Knowledge-based analysis of microarray gene expression data by using support vector machines. Pro. Nat Acad. Sei., 97, 262-267.
    • (2000) Pro. Nat Acad. Sei , vol.97 , pp. 262-267
    • Brown, M.P.S.1
  • 15
    • 34548017677 scopus 로고    scopus 로고
    • Feature Mining and Pattern Classification for Steganalysis of LSB Matching Steganography in Grayscale Images
    • Liu, Q.; Sung, A.; Chen, Z. and Xu, J. (2008), Feature Mining and Pattern Classification for Steganalysis of LSB Matching Steganography in Grayscale Images, Pattern Recognition, 41 (1): 56-66.
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 56-66
    • Liu, Q.1    Sung, A.2    Chen, Z.3    Xu, J.4
  • 16
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J.; Silva, V. de and Langford, J. C. (2000), "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, pp. 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    Silva2    de, V.3    Langford, J.C.4
  • 17
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • Saul, L. K. and Roweis, S. T. (2003), "Think globally, fit locally: Unsupervised learning of low dimensional manifolds," Journal of Machine Learning Research, vol. 4, pp. 119-155.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 18
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin, M. and Niyogi, P. (2003), "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Computation, vol. 15, no. 6, pp. 1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 19
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • Xing, E.; Ng, A.; Jordan, M. and Russell, S. (2003), "Distance metric learning with application to clustering with side-information," in Proc. NIPS, 2003.
    • (2003) Proc. NIPS
    • Xing, E.1    Ng, A.2    Jordan, M.3    Russell, S.4
  • 20
    • 84898941962 scopus 로고    scopus 로고
    • Adaptive nearest neighbor classification using support vector machines
    • Domeniconi, C. and Gunopulos, D. (2002), "Adaptive nearest neighbor classification using support vector machines," Proc. NIPS, 2002.
    • (2002) Proc. NIPS
    • Domeniconi, C.1    Gunopulos, D.2
  • 24
    • 24644458753 scopus 로고    scopus 로고
    • Applying neighborhood consistency for fast clustering and kernel density estimation
    • Zhang, K.; Tang, M. and Kwok, J. T. (2005), "Applying neighborhood consistency for fast clustering and kernel density estimation." in Proc. Computer Vision and Pattern Recognition, 2005, pp. 1001-1007
    • (2005) Proc. Computer Vision and Pattern Recognition , pp. 1001-1007
    • Zhang, K.1    Tang, M.2    Kwok, J.T.3
  • 25
    • 24644436425 scopus 로고    scopus 로고
    • Learning a Similarity Metric Discriminatively, with Application to Face Verification
    • Chopra, S.; Hadsell, R. and. LeCun Y. (2005), "Learning a Similarity Metric Discriminatively, with Application to Face Verification", Proc. Computer Vision and Pattern Recognition, 2005 - Vol. 1, pp. 539-546.
    • (2005) Proc. Computer Vision and Pattern Recognition , vol.1 , pp. 539-546
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 26
    • 33749550361 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Y. Weiss, B. SchÄolkopf, and J. Platt, Eds. Cambridge, MA: MIT Press
    • Weinberger, K.; Blitzer, J. and Saul, L. (2006), "Distance metric learning for large margin nearest neighbor classification," in Proc. NIPS, Y. Weiss, B. SchÄolkopf, and J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 1475-1482.
    • (2006) Proc. NIPS , pp. 1475-1482
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3
  • 27
    • 11144355338 scopus 로고    scopus 로고
    • Pharmacoproteomie Analysis of Prechemotherapy and Postchemotherapy Plasma Samples from Patients Receiving Neoadjuvant or Adjuvant Chemotherapy for Breast Carcinoma
    • Pusztai et al. (2004), "Pharmacoproteomie Analysis of Prechemotherapy and Postchemotherapy Plasma Samples from Patients Receiving Neoadjuvant or Adjuvant Chemotherapy for Breast Carcinoma", Cancer 100:1814-1822.
    • (2004) Cancer , vol.100 , pp. 1814-1822
    • Pusztai1
  • 28
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • Vandenberghe, L. and Boyd, S.P. (1996), "Semidefinite programming", SIAM Review, 38 (1):49-95.
    • (1996) SIAM Review , vol.38 , Issue.1 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.