메뉴 건너뛰기




Volumn 87, Issue 1, 2009, Pages 88-98

Model selection in a global analysis of a microarray experiment

Author keywords

Bayesian mixed linear model; Differential gene expression; False discovery rate; Microarray; Model selection; Normalization

Indexed keywords

ANIMAL; ANIMAL DISEASE; ARTICLE; BIOLOGICAL MODEL; CATTLE; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENETIC VARIABILITY; GENETICS; MALE; METABOLISM; METHODOLOGY; SKELETAL MUSCLE;

EID: 60549084381     PISSN: 00218812     EISSN: 15253163     Source Type: Journal    
DOI: 10.2527/jas.2007-0713     Document Type: Article
Times cited : (3)

References (43)
  • 1
    • 22944460430 scopus 로고    scopus 로고
    • Replication, variation and normalisation in microarray experiments
    • Altman, N. 2005. Replication, variation and normalisation in microarray experiments. Appl. Bioinformatics 4:33-44.
    • (2005) Appl. Bioinformatics , vol.4 , pp. 33-44
    • Altman, N.1
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. A. 57:289-300.
    • (1995) J. Roy. Stat. Soc. A , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of experimental design for cDNA microarrays
    • Churchill, G. A. 2002. Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32:490-495.
    • (2002) Nat. Genet , vol.32 , pp. 490-495
    • Churchill, G.A.1
  • 5
    • 3943112078 scopus 로고    scopus 로고
    • How many mice and how many arrays? Replication of cDNA microarrays experiments
    • S. M. Lin and E. T. Allred, ed, Kluwer, New York, NY
    • Cui, X., and G. A. Churchill. 2003. How many mice and how many arrays? Replication of cDNA microarrays experiments. In S. M. Lin and E. T. Allred, ed. Methods of Microarray Data Analysis III. Kluwer, New York, NY.
    • (2003) Methods of Microarray Data Analysis III
    • Cui, X.1    Churchill, G.A.2
  • 6
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components estimates
    • Cui, X., J. T. G. Hwang, J. Qui, N. J. Blades, and G. A. Churchill. 2005. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6:59-77.
    • (2005) Biostatistics , vol.6 , pp. 59-77
    • Cui, X.1    Hwang, J.T.G.2    Qui, J.3    Blades, N.J.4    Churchill, G.A.5
  • 8
    • 2142732441 scopus 로고    scopus 로고
    • Large-scale simultaneous hypothesis testing: The choice of a null hypothesis
    • Efron, B. 2004. Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. J. Am. Stat. Assoc. 99:96-104.
    • (2004) J. Am. Stat. Assoc , vol.99 , pp. 96-104
    • Efron, B.1
  • 9
    • 0035992248 scopus 로고    scopus 로고
    • Empirical Bayes methods and false discovery rates for microarrays
    • Efron, B., and R. Tibshirani. 2002. Empirical Bayes methods and false discovery rates for microarrays. Genet. Epidemiol. 23:70-86.
    • (2002) Genet. Epidemiol , vol.23 , pp. 70-86
    • Efron, B.1    Tibshirani, R.2
  • 12
    • 0031990947 scopus 로고    scopus 로고
    • Using coupling with the Gibbs sampler to assess convergence in animal models
    • García-Cortés, A., M. Rico, and E. Groeneveld. 1997. Using coupling with the Gibbs sampler to assess convergence in animal models. J. Anim. Sci. 76:441-447.
    • (1997) J. Anim. Sci , vol.76 , pp. 441-447
    • García-Cortés, A.1    Rico, M.2    Groeneveld, E.3
  • 13
    • 0001803816 scopus 로고    scopus 로고
    • Model determination using sampling-based methods
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, ed. Chapman and Hall, London, UK
    • Gelfand, A. E. 1996. Model determination using sampling-based methods. Markov Chain Monte Carlo in Practice. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, ed. Chapman and Hall, London, UK.
    • (1996) Markov Chain Monte Carlo in Practice
    • Gelfand, A.E.1
  • 14
    • 0000079228 scopus 로고
    • Model determination using predictive distributions with implementation via sampling-based methods
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, A. F. M. Smith, ed. Oxford University Press, Oxford, UK
    • Gelfand, A. E., D. K. Dey, and H. Chang. 1992. Model determination using predictive distributions with implementation via sampling-based methods. Bayesian Statistic 4. J. M. Bernardo, J. O. Berger, A. P. Dawid, A. F. M. Smith, ed. Oxford University Press, Oxford, UK.
    • (1992) Bayesian Statistic , vol.4
    • Gelfand, A.E.1    Dey, D.K.2    Chang, H.3
  • 16
    • 22144490889 scopus 로고    scopus 로고
    • A note on joint versus gene-specific mixed model analysis of microarray gene expression data
    • Hoeschele, I., and H. Li. 2005. A note on joint versus gene-specific mixed model analysis of microarray gene expression data. Biostatistics 6:183-186.
    • (2005) Biostatistics , vol.6 , pp. 183-186
    • Hoeschele, I.1    Li, H.2
  • 17
    • 0042744696 scopus 로고    scopus 로고
    • Detecting differentially expressed genes in microarrays using bayesian model selection
    • Ishwaran, H., and J. S. Rao. 2003. Detecting differentially expressed genes in microarrays using bayesian model selection. J. Am. Stat. Assoc. 98:438-455.
    • (2003) J. Am. Stat. Assoc , vol.98 , pp. 438-455
    • Ishwaran, H.1    Rao, J.S.2
  • 18
    • 0001307109 scopus 로고    scopus 로고
    • Studying convergence of Markov chain Monte Carlo algorithms using coupled sample paths
    • Johnson, V. E. 1996. Studying convergence of Markov chain Monte Carlo algorithms using coupled sample paths. J. Am. Stat. Assoc. 91:154-166.
    • (1996) J. Am. Stat. Assoc , vol.91 , pp. 154-166
    • Johnson, V.E.1
  • 20
    • 0346021343 scopus 로고    scopus 로고
    • Linear models for microarray data analysis: Hidden similarities and differences
    • Kerr, M. K. 2003. Linear models for microarray data analysis: Hidden similarities and differences. J. Comput. Biol. 10:891-901.
    • (2003) J. Comput. Biol , vol.10 , pp. 891-901
    • Kerr, M.K.1
  • 22
    • 0034927555 scopus 로고    scopus 로고
    • Analysis of variance for gene expression microarray data
    • Kerr, M. K., M. Martin, and G. A. Churchill. 2000. Analysis of variance for gene expression microarray data. J. Comput. Biol. 7:819-837.
    • (2000) J. Comput. Biol , vol.7 , pp. 819-837
    • Kerr, M.K.1    Martin, M.2    Churchill, G.A.3
  • 24
    • 9744252828 scopus 로고    scopus 로고
    • Development and application of a bovine cDNA microarray for expression profiling of muscle and adipose tissue
    • Lehnert, S. A., Y. H. Wang, and K. A. Byrne. 2004. Development and application of a bovine cDNA microarray for expression profiling of muscle and adipose tissue. Aust. J. Exp. Agric. 44:1127-1133.
    • (2004) Aust. J. Exp. Agric , vol.44 , pp. 1127-1133
    • Lehnert, S.A.1    Wang, Y.H.2    Byrne, K.A.3
  • 25
    • 33644755917 scopus 로고    scopus 로고
    • Gene expression-based approaches to beef quality research
    • Lehnert, S. A., Y. H. Wang, S. H. Tan, and A. Reverter. 2006. Gene expression-based approaches to beef quality research. Aust. J. Exp. Agric. 46:165-172.
    • (2006) Aust. J. Exp. Agric , vol.46 , pp. 165-172
    • Lehnert, S.A.1    Wang, Y.H.2    Tan, S.H.3    Reverter, A.4
  • 26
    • 39149111937 scopus 로고    scopus 로고
    • Model-based variance-stabilizing transformation for Illumina microarray data
    • Lin, S. M., P. Du, W. Huber, and W. A. Kibbe. 2008. Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 36:e11.
    • (2008) Nucleic Acids Res , vol.36
    • Lin, S.M.1    Du, P.2    Huber, W.3    Kibbe, W.A.4
  • 27
    • 33847325857 scopus 로고    scopus 로고
    • Flexible empirical Bayes models for differential gene expression
    • Lo, K., and R. Gottardo. 2007. Flexible empirical Bayes models for differential gene expression. Bioinformatics 23:328-335.
    • (2007) Bioinformatics , vol.23 , pp. 328-335
    • Lo, K.1    Gottardo, R.2
  • 28
    • 3242875751 scopus 로고    scopus 로고
    • Assessment of homogeneity vs. heterogeneity of residual variance in random regression test-day models in a Bayesian analysis
    • López-Romero, P., R. Rekaya, and M. J. Carabaño. 2003. Assessment of homogeneity vs. heterogeneity of residual variance in random regression test-day models in a Bayesian analysis. J. Dairy Sci. 86:3374-3385.
    • (2003) J. Dairy Sci , vol.86 , pp. 3374-3385
    • López-Romero, P.1    Rekaya, R.2    Carabaño, M.J.3
  • 29
    • 33645094969 scopus 로고    scopus 로고
    • Using mixture models to detect differentially expressed genes
    • McLachlan, G. J., R. W. Bean, J. Ben-Tovim, and J. X. Zhu. 2005. Using mixture models to detect differentially expressed genes. Aust. J. Exp. Agric. 45:859-866.
    • (2005) Aust. J. Exp. Agric , vol.45 , pp. 859-866
    • McLachlan, G.J.1    Bean, R.W.2    Ben-Tovim, J.3    Zhu, J.X.4
  • 31
    • 0003078723 scopus 로고
    • Approximate Bayesian inference with the weighted likelihood bootstrap
    • Newton, M. A., and A. E. Raftery. 1994. Approximate Bayesian inference with the weighted likelihood bootstrap. J. Roy. Stat. Soc. Bull 56:3-48.
    • (1994) J. Roy. Stat. Soc. Bull , vol.56 , pp. 3-48
    • Newton, M.A.1    Raftery, A.E.2
  • 33
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, ed. Oxford University Press, Oxford, UK
    • Raftery, A. E., and S. M. Lewis. 1992. How many iterations in the Gibbs sampler. Bayesian Statistic 4. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, ed. Oxford University Press, Oxford, UK.
    • (1992) Bayesian Statistic , vol.4
    • Raftery, A.E.1    Lewis, S.M.2
  • 34
    • 62149148247 scopus 로고    scopus 로고
    • Raftery, A. E, and S. M. Lewis. 1995. Gibbsit version 2.0
    • Raftery, A. E., and S. M. Lewis. 1995. Gibbsit version 2.0. http:// lib.stat.cmu.edu/general/gibbsit.
  • 35
    • 0642279219 scopus 로고    scopus 로고
    • A mixture model-based cluster analysis of cDNA microarray gene expression data on Brahman and Brahman composite steers fed high-, medium-, and lowquality diets
    • Reverter, A., K. A. Byrne, H. L. Bruce, Y. H. Wang, B. P. Dalrymple, and S. A. Lehnert. 2003a. A mixture model-based cluster analysis of cDNA microarray gene expression data on Brahman and Brahman composite steers fed high-, medium-, and lowquality diets. J. Anim. Sci. 81:1900-1910.
    • (2003) J. Anim. Sci , vol.81 , pp. 1900-1910
    • Reverter, A.1    Byrne, K.A.2    Bruce, H.L.3    Wang, Y.H.4    Dalrymple, B.P.5    Lehnert, S.A.6
  • 36
    • 2442481738 scopus 로고    scopus 로고
    • Bayesmix: A software program for Bayesian analysis of mixture models with an application to model-based clustering of microarray gene expression data
    • Reverter, A., K. A. Byrne, and B. P. Dalrymple. 2003b. Bayesmix: A software program for Bayesian analysis of mixture models with an application to model-based clustering of microarray gene expression data. Proc. Aust. Assoc. Anim. Breed. Genet. 15:90-93.
    • (2003) Proc. Aust. Assoc. Anim. Breed. Genet , vol.15 , pp. 90-93
    • Reverter, A.1    Byrne, K.A.2    Dalrymple, B.P.3
  • 37
    • 18844414500 scopus 로고    scopus 로고
    • Reassessing design and analysis of two-colour microarray experiments using mixed effects models
    • Rosa, G. J. M., J. P. Steibel, and R. J. Tempelman. 2005. Reassessing design and analysis of two-colour microarray experiments using mixed effects models. Comp. Funct. Genomics 6:123-131.
    • (2005) Comp. Funct. Genomics , vol.6 , pp. 123-131
    • Rosa, G.J.M.1    Steibel, J.P.2    Tempelman, R.J.3
  • 38
    • 4544341015 scopus 로고    scopus 로고
    • Smyth, G. 2004. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3: (article 3).
    • Smyth, G. 2004. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3: (article 3).
  • 40
    • 18744422885 scopus 로고    scopus 로고
    • Microarray optimizations: Increasing spot accuracy and automated identification of true microarray signals
    • Tran, P. H., D. A. Peiffer, Y. Shin, L. M. Meek, J. P. Brody, and K. W. Y. Cho. 2002. Microarray optimizations: Increasing spot accuracy and automated identification of true microarray signals. Nucleic Acids Res. 30:e54.
    • (2002) Nucleic Acids Res , vol.30
    • Tran, P.H.1    Peiffer, D.A.2    Shin, Y.3    Meek, L.M.4    Brody, J.P.5    Cho, K.W.Y.6
  • 41
    • 0037195138 scopus 로고    scopus 로고
    • Quantitative noise analysis for gene expression microarray experiments
    • Tu, Y., G. Stolovitzky, and U. Klein. 2002. Quantitative noise analysis for gene expression microarray experiments. Proc. Natl. Acad. Sci. USA 99:14031-14036.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 14031-14036
    • Tu, Y.1    Stolovitzky, G.2    Klein, U.3
  • 43
    • 18844436999 scopus 로고    scopus 로고
    • Bayesian normalization and identification for differential gene expression data
    • Zhang, D., M. Wells, C. D. Smart, and W. E. Ry. 2005. Bayesian normalization and identification for differential gene expression data. J. Comput. Biol. 12:391-406.
    • (2005) J. Comput. Biol , vol.12 , pp. 391-406
    • Zhang, D.1    Wells, M.2    Smart, C.D.3    Ry, W.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.