메뉴 건너뛰기




Volumn 53, Issue 5, 2009, Pages 1566-1576

A mixture model approach for the analysis of small exploratory microarray experiments

Author keywords

[No Author keywords available]

Indexed keywords

COSMIC RAYS; EXPERIMENTS; GENES; MIXTURES; SIGNAL TO NOISE RATIO;

EID: 60349130132     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2008.06.011     Document Type: Article
Times cited : (4)

References (35)
  • 1
    • 0000417176 scopus 로고
    • Mixture-models, outliers, and the EM algorithm
    • Aitkin M., and Wilson G.T. Mixture-models, outliers, and the EM algorithm. Technometrics 22 (1980) 325-331
    • (1980) Technometrics , vol.22 , pp. 325-331
    • Aitkin, M.1    Wilson, G.T.2
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19 6 (1974) 716-723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 3
    • 8844241460 scopus 로고    scopus 로고
    • Class discovery and classification of tumor samples using mixture modeling of gene expression data - a unified approach
    • Alexandridis R., Lin S.L., and Irwin M. Class discovery and classification of tumor samples using mixture modeling of gene expression data - a unified approach. Bioinformatics 20 (2004) 2545-2552
    • (2004) Bioinformatics , vol.20 , pp. 2545-2552
    • Alexandridis, R.1    Lin, S.L.2    Irwin, M.3
  • 5
    • 15844371192 scopus 로고    scopus 로고
    • Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods
    • Asyali M.H., and Alci M. Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods. Bioinformatics 21 (2005) 644-649
    • (2005) Bioinformatics , vol.21 , pp. 644-649
    • Asyali, M.H.1    Alci, M.2
  • 9
    • 84949698779 scopus 로고
    • Mixture model tests of hierarchical clustering algorithms - problem of classifying everybody
    • Edelbrock C. Mixture model tests of hierarchical clustering algorithms - problem of classifying everybody. Multivariate Behavioral Research 14 (1979) 367-384
    • (1979) Multivariate Behavioral Research , vol.14 , pp. 367-384
    • Edelbrock, C.1
  • 11
    • 4444305034 scopus 로고    scopus 로고
    • Mixture models for assessing differential expression in complex tissues using microarray data
    • Ghosh D. Mixture models for assessing differential expression in complex tissues using microarray data. Bioinformatics 20 (2004) 1663-1669
    • (2004) Bioinformatics , vol.20 , pp. 1663-1669
    • Ghosh, D.1
  • 12
    • 33747344944 scopus 로고    scopus 로고
    • Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
    • Jeffery I.B., Higgins D.G., and Culhane A.C. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 7 (2006) 359
    • (2006) BMC Bioinformatics , vol.7 , pp. 359
    • Jeffery, I.B.1    Higgins, D.G.2    Culhane, A.C.3
  • 13
    • 2942651196 scopus 로고    scopus 로고
    • Modeling microarray data using a threshold mixture model
    • Kauermann G., and Eilers P. Modeling microarray data using a threshold mixture model. Biometrics 60 (2004) 376-387
    • (2004) Biometrics , vol.60 , pp. 376-387
    • Kauermann, G.1    Eilers, P.2
  • 14
    • 0346888587 scopus 로고    scopus 로고
    • On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles
    • Kendziorski C.M., Newton M.A., Lan H., and Gould M.N. On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics In Medicine 22 (2003) 3899-3914
    • (2003) Statistics In Medicine , vol.22 , pp. 3899-3914
    • Kendziorski, C.M.1    Newton, M.A.2    Lan, H.3    Gould, M.N.4
  • 15
    • 34447345702 scopus 로고    scopus 로고
    • A mixture model approach to the tests of concordance and discordance between two large-scale experiments with two-sample groups
    • Lai Y.L., Adam B.L., Podolsky R., and She J.X. A mixture model approach to the tests of concordance and discordance between two large-scale experiments with two-sample groups. Bioinformatics 23 (2007) 1243-1250
    • (2007) Bioinformatics , vol.23 , pp. 1243-1250
    • Lai, Y.L.1    Adam, B.L.2    Podolsky, R.3    She, J.X.4
  • 16
    • 0034730124 scopus 로고    scopus 로고
    • Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations
    • Lee M.L.T., Kuo F.C., Whitmore G.A., and Sklar J. Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. PNAS 97 (2000) 9834-9839
    • (2000) PNAS , vol.97 , pp. 9834-9839
    • Lee, M.L.T.1    Kuo, F.C.2    Whitmore, G.A.3    Sklar, J.4
  • 17
    • 8844258766 scopus 로고    scopus 로고
    • A mixture model for estimating the local false discovery rate in DNA microarray analysis
    • Liao J.G., Lin Y., Selvanayagam Z.E., and Shih W.C.J. A mixture model for estimating the local false discovery rate in DNA microarray analysis. Bioinformatics 20 (2004) 2694-2701
    • (2004) Bioinformatics , vol.20 , pp. 2694-2701
    • Liao, J.G.1    Lin, Y.2    Selvanayagam, Z.E.3    Shih, W.C.J.4
  • 18
    • 32144450423 scopus 로고    scopus 로고
    • Classification of microarray data with factor mixture models
    • Martella F. Classification of microarray data with factor mixture models. Bioinformatics 22 (2006) 202-208
    • (2006) Bioinformatics , vol.22 , pp. 202-208
    • Martella, F.1
  • 19
    • 33745606461 scopus 로고    scopus 로고
    • A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays
    • McLachlan G.J., Bean R.W., and Jones L.B.T. A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22 (2006) 1608-1615
    • (2006) Bioinformatics , vol.22 , pp. 1608-1615
    • McLachlan, G.J.1    Bean, R.W.2    Jones, L.B.T.3
  • 20
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan G.J., Bean R.W., and Peel D. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18 (2002) 413-422
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 22
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton M.A., Noueiry A., Sarkar D., and Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5 (2004) 155-176
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 23
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan W. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18 (2002) 546-554
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 24
    • 0041592555 scopus 로고    scopus 로고
    • On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression
    • Pan W. On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression. Bioinformatics 19 (2003) 1333-1340
    • (2003) Bioinformatics , vol.19 , pp. 1333-1340
    • Pan, W.1
  • 25
    • 33750022956 scopus 로고    scopus 로고
    • Semi-supervised learning via penalized mixture model with application to microarray sample classification
    • Pan W., Shen X.T., Jiang A.X., and Hebbel R.P. Semi-supervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics 22 (2006) 2388-2395
    • (2006) Bioinformatics , vol.22 , pp. 2388-2395
    • Pan, W.1    Shen, X.T.2    Jiang, A.X.3    Hebbel, R.P.4
  • 26
    • 2342646702 scopus 로고    scopus 로고
    • Genom-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila
    • Pedra J.H.F., McIntyre L.M., Scharf M.E., and Pittendrigh B.R. Genom-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. PNAS 101 (2004) 7034-7039
    • (2004) PNAS , vol.101 , pp. 7034-7039
    • Pedra, J.H.F.1    McIntyre, L.M.2    Scharf, M.E.3    Pittendrigh, B.R.4
  • 27
    • 33749988857 scopus 로고    scopus 로고
    • Simultaneous identification of differential gene expression and connectivity in inflammation, adipogenesis and cancer
    • Reverter A., Ingham A., Lehnert S.A., Tan S.H., Wang Y.H., Ratnakumar A., and Dalrymple B.P. Simultaneous identification of differential gene expression and connectivity in inflammation, adipogenesis and cancer. Bioinformatics 22 (2006) 2396-2404
    • (2006) Bioinformatics , vol.22 , pp. 2396-2404
    • Reverter, A.1    Ingham, A.2    Lehnert, S.A.3    Tan, S.H.4    Wang, Y.H.5    Ratnakumar, A.6    Dalrymple, B.P.7
  • 28
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 2 (1978) 461-464
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A Bayesian interpretation and the q-value
    • Storey J.D. The positive false discovery rate: A Bayesian interpretation and the q-value. Annals of Statistics 31 (2003) 2013-2035
    • (2003) Annals of Statistics , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 31
    • 1142273091 scopus 로고    scopus 로고
    • Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach
    • Storey J.D., Taylor J.E., and Siegmund D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. Journal of the Royal Statistical Society Series B-Statistical Methodology 66 (2004) 187-205
    • (2004) Journal of the Royal Statistical Society Series B-Statistical Methodology , vol.66 , pp. 187-205
    • Storey, J.D.1    Taylor, J.E.2    Siegmund, D.3
  • 32
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher V.G., Tibshirani R., and Chu G. Significance analysis of microarrays applied to the ionizing radiation response. PNAS 98 (2001) 5116-5121
    • (2001) PNAS , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 33
    • 21044459850 scopus 로고    scopus 로고
    • Microarrays and beyond: What potential do current and future genomics tools have for breeders
    • Walsh B., and Henderson D. Microarrays and beyond: What potential do current and future genomics tools have for breeders. Journal of Animal Sciences 82 Suppl (2004) E292-E299
    • (2004) Journal of Animal Sciences , vol.82 , Issue.SUPPL
    • Walsh, B.1    Henderson, D.2
  • 34
    • 0037069380 scopus 로고    scopus 로고
    • Combining mapping and arraying: An approach to candidate gene identification
    • Wayne M.L., and McIntyre L.M. Combining mapping and arraying: An approach to candidate gene identification. PNAS 99 (2002) 14903-14906
    • (2002) PNAS , vol.99 , pp. 14903-14906
    • Wayne, M.L.1    McIntyre, L.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.