-
2
-
-
34247849152
-
Training a support vector machine in the primal
-
5
-
O. Chapelle 2007 Training a support vector machine in the primal Neural Computation 19 5 1155 1178
-
(2007)
Neural Computation
, vol.19
, pp. 1155-1178
-
-
Chapelle, O.1
-
4
-
-
0000541146
-
Asymptotic analysis of penalized likelihood and related estimators
-
D. Cox F. O'Sullivan 1990 Asymptotic analysis of penalized likelihood and related estimators The Annals of Statistics 18 1676 1695
-
(1990)
The Annals of Statistics
, vol.18
, pp. 1676-1695
-
-
Cox, D.1
O'Sullivan, F.2
-
5
-
-
34250263445
-
Smoothing noisy data with spline functions
-
P. Craven G. Wahba 1979 Smoothing noisy data with spline functions Numerische Mathematik 31 377 403
-
(1979)
Numerische Mathematik
, vol.31
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
9
-
-
4944239996
-
The estimation of prediction error: Covariance penalties and cross-validation
-
14
-
B. Efron 2004 The estimation of prediction error: covariance penalties and cross-validation Journal of the American Statistical Association 99 14 619 632
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 619-632
-
-
Efron, B.1
-
11
-
-
34249726632
-
Efficient computation and model selection for the support vector regression
-
L. Gunter J. Zhu 2007 Efficient computation and model selection for the support vector regression Neural Computation 19 1633 1655
-
(2007)
Neural Computation
, vol.19
, pp. 1633-1655
-
-
Gunter, L.1
Zhu, J.2
-
12
-
-
0003684449
-
-
Springer Canada
-
Hastie, T. J., Tibshirani, R. J., & Friedman, J. (2001). The elements of statistical learning. Data mining, inference and prediction. Canada: Springer.
-
(2001)
The Elements of Statistical Learning. Data Mining, Inference and Prediction
-
-
Hastie, T.J.1
Tibshirani, R.J.2
Friedman, J.3
-
16
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Y. Nesterov 2005 Smooth minimization of non-smooth functions Mathematical Programming 103 127 152
-
(2005)
Mathematical Programming
, vol.103
, pp. 127-152
-
-
Nesterov, Y.1
-
20
-
-
0042049518
-
A theory of networks for approximation and learning
-
Poggio, T., & Girosi, F. (1992). A theory of networks for approximation and learning. In Foundation of neural networks (pp. 91-106).
-
(1992)
Foundation of Neural Networks
, pp. 91-106
-
-
Poggio, T.1
Girosi, F.2
-
21
-
-
0032523506
-
Properties of support vector machines
-
M. Pontil A. Verri 1998 Properties of support vector machines Neural Computation 10 955 974
-
(1998)
Neural Computation
, vol.10
, pp. 955-974
-
-
Pontil, M.1
Verri, A.2
-
23
-
-
0003408420
-
-
MIT Press Cambridge
-
Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning. Cambridge: MIT Press.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning
-
-
Schölkopf, B.1
Smola, A.J.2
-
24
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz 1978 Estimating the dimension of a model The Annals of Statistics 6 461 464
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
26
-
-
0000169918
-
Estimation of the mean of a multivariate normal distribution
-
C. Stein 1981 Estimation of the mean of a multivariate normal distribution The Annals of Statistics 9 1135 1151
-
(1981)
The Annals of Statistics
, vol.9
, pp. 1135-1151
-
-
Stein, C.1
-
31
-
-
0032351389
-
On measuring and correcting the effects of data mining and model selection
-
J. Ye 1998 On measuring and correcting the effects of data mining and model selection Journal of the American Statistical Association 93 120 131
-
(1998)
Journal of the American Statistical Association
, vol.93
, pp. 120-131
-
-
Ye, J.1
|