메뉴 건너뛰기




Volumn 36, Issue 4, 2009, Pages 8659-8666

Financial distress prediction based on serial combination of multiple classifiers

Author keywords

Financial distress prediction; Multiple classifiers; Serial combination

Indexed keywords

COMBINATORIAL SWITCHING; FINANCE; LEARNING SYSTEMS; OBJECT RECOGNITION;

EID: 60249097469     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.10.002     Document Type: Article
Times cited : (49)

References (36)
  • 1
    • 84980104458 scopus 로고
    • Financial ratios discriminant analysis and the prediction of corporate bankruptcy
    • Altman E.I. Financial ratios discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23 (1968) 589-609
    • (1968) Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 2
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure
    • Beaver W. Financial ratios as predictors of failure. Journal of Accounting Research 4 (1966) 71-111
    • (1966) Journal of Accounting Research , vol.4 , pp. 71-111
    • Beaver, W.1
  • 3
    • 56349142889 scopus 로고    scopus 로고
    • Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund transferred banks in Turkey
    • in press, doi:10.1016/j.eswa.2008.01.003
    • Boyacioglu, M., Kara, Y., Baykan, O. (in press). Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund transferred banks in Turkey. Expert Systems with Applications. doi:10.1016/j.eswa.2008.01.003.
    • Expert Systems with Applications
    • Boyacioglu, M.1    Kara, Y.2    Baykan, O.3
  • 4
    • 0030190036 scopus 로고    scopus 로고
    • Self organizing neural networks for financial diagnosis
    • Carlos S.-C. Self organizing neural networks for financial diagnosis. Decision Support Systems 17 (1996) 227-238
    • (1996) Decision Support Systems , vol.17 , pp. 227-238
    • Carlos, S.-C.1
  • 5
    • 44949091421 scopus 로고    scopus 로고
    • Feature selection to diagnose a business crisis by using a real GA-based support vector machine: An empirical study
    • Chen L.-H., and Hsiao H.-D. Feature selection to diagnose a business crisis by using a real GA-based support vector machine: An empirical study. Expert Systems with Applications 35 (2008) 1145-1155
    • (2008) Expert Systems with Applications , vol.35 , pp. 1145-1155
    • Chen, L.-H.1    Hsiao, H.-D.2
  • 6
    • 53849090652 scopus 로고    scopus 로고
    • An integrative model with subject weight based on neural network learning for bankruptcy prediction
    • Cho S., Kim J., and Bae J.K. An integrative model with subject weight based on neural network learning for bankruptcy prediction. Expert Systems with Applications 36 (2009) 403-410
    • (2009) Expert Systems with Applications , vol.36 , pp. 403-410
    • Cho, S.1    Kim, J.2    Bae, J.K.3
  • 8
    • 38649138750 scopus 로고    scopus 로고
    • Forecasting financial condition of Chinese listed companies based on support vector machine
    • Ding Y., Song X., and Zen Y. Forecasting financial condition of Chinese listed companies based on support vector machine. Expert Systems with Applications 34 (2008) 3081-3089
    • (2008) Expert Systems with Applications , vol.34 , pp. 3081-3089
    • Ding, Y.1    Song, X.2    Zen, Y.3
  • 9
    • 0000152448 scopus 로고
    • Forecasting with neural networks: An application using bankruptcy data
    • Fletcher D., and Goss E. Forecasting with neural networks: An application using bankruptcy data. Information and Management 24 (1993) 159-167
    • (1993) Information and Management , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 10
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification: The case of financial distress
    • Frydman H., Altman E.I., and Kao D. Introducing recursive partitioning for financial classification: The case of financial distress. Journal of Finance 40 1 (1985) 269-291
    • (1985) Journal of Finance , vol.40 , Issue.1 , pp. 269-291
    • Frydman, H.1    Altman, E.I.2    Kao, D.3
  • 12
    • 33846454686 scopus 로고    scopus 로고
    • Predicting corporate financial distress based on integration of support vector machine and logistic regression
    • Hua Z., Wang Y., Wang X., Zhang B., and Liang L. Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Systems with Applications 33 (2007) 434-440
    • (2007) Expert Systems with Applications , vol.33 , pp. 434-440
    • Hua, Z.1    Wang, Y.2    Wang, X.3    Zhang, B.4    Liang, L.5
  • 13
    • 33745625856 scopus 로고    scopus 로고
    • An application of support vector machine to companies' financial distress prediction
    • Hui X.-F., and Sun J. An application of support vector machine to companies' financial distress prediction. Lecture Notes in Artificial Intelligence 3885 (2006) 274-282
    • (2006) Lecture Notes in Artificial Intelligence , vol.3885 , pp. 274-282
    • Hui, X.-F.1    Sun, J.2
  • 14
    • 0030414816 scopus 로고    scopus 로고
    • Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction
    • Jo H., and Han I. Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction. Expert Systems with Applications 11 4 (1996) 415-422
    • (1996) Expert Systems with Applications , vol.11 , Issue.4 , pp. 415-422
    • Jo, H.1    Han, I.2
  • 15
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis
    • Jo H., Han I., and Lee H. Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis. Expert Systems with Applications 13 2 (1997) 97-108
    • (1997) Expert Systems with Applications , vol.13 , Issue.2 , pp. 97-108
    • Jo, H.1    Han, I.2    Lee, H.3
  • 16
    • 0037209499 scopus 로고    scopus 로고
    • Combination of multiple classifiers for the customer's purchase behavior prediction
    • Kim E., Kim W., and Lee Y. Combination of multiple classifiers for the customer's purchase behavior prediction. Decision Support Systems 34 (2002) 167-175
    • (2002) Decision Support Systems , vol.34 , pp. 167-175
    • Kim, E.1    Kim, W.2    Lee, Y.3
  • 17
    • 33748082327 scopus 로고    scopus 로고
    • An evolutionary approach to the combination of multiple classifiers to predict a stock price index
    • Kim M.-J., Min S.-H., and Han I. An evolutionary approach to the combination of multiple classifiers to predict a stock price index. Expert Systems with Applications 31 (2006) 241-247
    • (2006) Expert Systems with Applications , vol.31 , pp. 241-247
    • Kim, M.-J.1    Min, S.-H.2    Han, I.3
  • 18
    • 54949111332 scopus 로고    scopus 로고
    • Ranking-order case-based reasoning for financial distress prediction
    • Li H., and Sun J. Ranking-order case-based reasoning for financial distress prediction. Knowledge-Based Systems 21 (2008) 868-878
    • (2008) Knowledge-Based Systems , vol.21 , pp. 868-878
    • Li, H.1    Sun, J.2
  • 19
    • 53849129254 scopus 로고    scopus 로고
    • Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors
    • Li H., Sun J., and Sun B.-L. Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors. Expert Systems with Applications 36 (2009) 643-659
    • (2009) Expert Systems with Applications , vol.36 , pp. 643-659
    • Li, H.1    Sun, J.2    Sun, B.-L.3
  • 20
    • 0037117685 scopus 로고    scopus 로고
    • Genetic programming and rough sets: A hybrid approach to bankruptcy classification
    • McKee T.E., and Lensberg T. Genetic programming and rough sets: A hybrid approach to bankruptcy classification. European Journal of Operational Research 138 (2002) 436-451
    • (2002) European Journal of Operational Research , vol.138 , pp. 436-451
    • McKee, T.E.1    Lensberg, T.2
  • 21
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • Min J.H., and Lee Y.-C. Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications 28 4 (2005) 128-134
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 128-134
    • Min, J.H.1    Lee, Y.-C.2
  • 22
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and scoring
    • in press, doi:10.1016/j.eswa.2008.01.018
    • Nanni, L., Lumini, A. (in press). An experimental comparison of ensemble of classifiers for bankruptcy prediction and scoring. Expert Systems with Applications. doi:10.1016/j.eswa.2008.01.018.
    • Expert Systems with Applications
    • Nanni, L.1    Lumini, A.2
  • 23
    • 33749376860 scopus 로고    scopus 로고
    • An effective combination based on class-wise expertise of diverse classifiers for predictive toxicology data mining
    • Neagu D., Guo G., and Wang S. An effective combination based on class-wise expertise of diverse classifiers for predictive toxicology data mining. Lecture Notes in Artificial Intelligence 4093 (2006) 165-172
    • (2006) Lecture Notes in Artificial Intelligence , vol.4093 , pp. 165-172
    • Neagu, D.1    Guo, G.2    Wang, S.3
  • 25
    • 0000666375 scopus 로고
    • Financial ratios and probabilistic prediction of bankruptcy
    • Ohlson J.A. Financial ratios and probabilistic prediction of bankruptcy. Journal of Accounting Research 18 (1980) 109-131
    • (1980) Journal of Accounting Research , vol.18 , pp. 109-131
    • Ohlson, J.A.1
  • 26
    • 0036271668 scopus 로고    scopus 로고
    • A potential use of data envelopment analysis for the inverse classification problem
    • Pendharkar P.C. A potential use of data envelopment analysis for the inverse classification problem. Omega 30 (2002) 243-248
    • (2002) Omega , vol.30 , pp. 243-248
    • Pendharkar, P.C.1
  • 27
    • 13544265385 scopus 로고    scopus 로고
    • A threshold varying artificial neural network approach for classification and its application to bankruptcy prediction problem
    • Pendharkar P.C. A threshold varying artificial neural network approach for classification and its application to bankruptcy prediction problem. Computers and Operations Research 32 (2005) 2561-2582
    • (2005) Computers and Operations Research , vol.32 , pp. 2561-2582
    • Pendharkar, P.C.1
  • 28
    • 50149113096 scopus 로고    scopus 로고
    • Threshold accepting trained principal component neural network and feature subset selection: Application to bankruptcy prediction in banks
    • Ravi V., and Pramodh C. Threshold accepting trained principal component neural network and feature subset selection: Application to bankruptcy prediction in banks. Applied Soft Computing 8 (2008) 1539-1548
    • (2008) Applied Soft Computing , vol.8 , pp. 1539-1548
    • Ravi, V.1    Pramodh, C.2
  • 29
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D., and Gabrys B. Classifier selection for majority voting. Information Fusion 6 (2005) 63-81
    • (2005) Information Fusion , vol.6 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 30
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • Shin K.-S., Lee T.S., and Kim H.-J. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications 28 1 (2005) 127-135
    • (2005) Expert Systems with Applications , vol.28 , Issue.1 , pp. 127-135
    • Shin, K.-S.1    Lee, T.S.2    Kim, H.-J.3
  • 31
    • 45049088570 scopus 로고    scopus 로고
    • Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers
    • Sun J., and Li H. Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers. Expert Systems with Applications 35 (2008) 818-827
    • (2008) Expert Systems with Applications , vol.35 , pp. 818-827
    • Sun, J.1    Li, H.2
  • 32
    • 53749101228 scopus 로고    scopus 로고
    • Financial distress early warning based on group decision making
    • Sun J., and Li H. Financial distress early warning based on group decision making. Computers & Operations Research 36 (2009) 885-906
    • (2009) Computers & Operations Research , vol.36 , pp. 885-906
    • Sun, J.1    Li, H.2
  • 33
    • 33749376158 scopus 로고    scopus 로고
    • Financial distress prediction based on similarity weighted voting CBR
    • Sun J., and Hui X.-F. Financial distress prediction based on similarity weighted voting CBR. Lecture Notes in Artificial Intelligence 4093 (2006) 947-958
    • (2006) Lecture Notes in Artificial Intelligence , vol.4093 , pp. 947-958
    • Sun, J.1    Hui, X.-F.2
  • 34
    • 33846660949 scopus 로고    scopus 로고
    • Using Bayesian networks for bankruptcy prediction: Some methodological issues
    • Sun L., and Shenoy P. Using Bayesian networks for bankruptcy prediction: Some methodological issues. European Journal of Operational Research 180 (2007) 738-753
    • (2007) European Journal of Operational Research , vol.180 , pp. 738-753
    • Sun, L.1    Shenoy, P.2
  • 35
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • Tsai C.-F., and Wu J.-W. Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Systems with Applications 34 (2008) 2639-2649
    • (2008) Expert Systems with Applications , vol.34 , pp. 2639-2649
    • Tsai, C.-F.1    Wu, J.-W.2
  • 36
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis
    • Zhang G., Hu M.Y., Patuwo B.E., and Indro D.C. Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis. European Journal of Operational Research 116 (1999) 16-32
    • (1999) European Journal of Operational Research , vol.116 , pp. 16-32
    • Zhang, G.1    Hu, M.Y.2    Patuwo, B.E.3    Indro, D.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.