메뉴 건너뛰기




Volumn 36, Issue 1, 2009, Pages 403-410

An integrative model with subject weight based on neural network learning for bankruptcy prediction

Author keywords

Bankruptcy prediction; Integrative prediction model; Method data fitness; Subject weight learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECISION MAKING; DECISION THEORY; DECISION TREES; DISCRIMINANT ANALYSIS; FORECASTING; IMAGE CLASSIFICATION; MATHEMATICAL MODELS; NETWORK PROTOCOLS; SENSOR NETWORKS; STATISTICAL TESTS; VEGETATION;

EID: 53849090652     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.09.060     Document Type: Article
Times cited : (58)

References (29)
  • 1
    • 33845890773 scopus 로고    scopus 로고
    • Abdelwahed, T., & Amir, E. M. (2005). New evolutionary bankruptcy forecasting model based on genetic algorithms and neural networks. In The 17th IEEE international conference on tools with artificial intelligence (pp. 241-245).
    • Abdelwahed, T., & Amir, E. M. (2005). New evolutionary bankruptcy forecasting model based on genetic algorithms and neural networks. In The 17th IEEE international conference on tools with artificial intelligence (pp. 241-245).
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23 4 (1968) 589-609
    • (1968) Journal of Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 4
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: A survey and new results
    • Atiya A.F. Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE Transactions on Neural Networks 12 4 (2001) 929-935
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.F.1
  • 5
    • 84941335954 scopus 로고    scopus 로고
    • Baek, J., & Cho, S. (2003). Bankruptcy prediction for credit risk using an auto-associative neural network in Korean firms. In IEEE International Conference on Computational Intelligence for Financial Engineering (pp. 25-29).
    • Baek, J., & Cho, S. (2003). Bankruptcy prediction for credit risk using an auto-associative neural network in Korean firms. In IEEE International Conference on Computational Intelligence for Financial Engineering (pp. 25-29).
  • 6
    • 53849122491 scopus 로고    scopus 로고
    • Bank of Korea. (2006). The Bank of Korea: Statistics Database.
    • Bank of Korea. (2006). The Bank of Korea: Statistics Database.
  • 7
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure. empirical research in accounting: Selected studies
    • Beaver W.H. Financial ratios as predictors of failure. empirical research in accounting: Selected studies. Journal of Accounting Research 4 1 (1966) 71-111
    • (1966) Journal of Accounting Research , vol.4 , Issue.1 , pp. 71-111
    • Beaver, W.H.1
  • 10
    • 0034562990 scopus 로고    scopus 로고
    • Comparative analysis of artificial neural network models: Application in bankruptcy prediction
    • Charalambous C., Charitou A., and Kaourou F. Comparative analysis of artificial neural network models: Application in bankruptcy prediction. Annals of Operations Research 99 (2000) 403-425
    • (2000) Annals of Operations Research , vol.99 , pp. 403-425
    • Charalambous, C.1    Charitou, A.2    Kaourou, F.3
  • 11
    • 0037401347 scopus 로고    scopus 로고
    • Credit scoring and rejected instances reassigning through evolutionary computation techniques
    • Chen M.C., and Huang S.H. Credit scoring and rejected instances reassigning through evolutionary computation techniques. Expert Systems with Applications 24 (2003) 433-441
    • (2003) Expert Systems with Applications , vol.24 , pp. 433-441
    • Chen, M.C.1    Huang, S.H.2
  • 12
    • 0041501047 scopus 로고
    • A neural network approach to forecasting financial distress
    • Coates P.K., and Fant L.F. A neural network approach to forecasting financial distress. Journal of Business Forecasting 3 4 (1992) 8-12
    • (1992) Journal of Business Forecasting , vol.3 , Issue.4 , pp. 8-12
    • Coates, P.K.1    Fant, L.F.2
  • 13
    • 0028416730 scopus 로고
    • Neural networks, decision tree induction and discriminant analysis: An empirical comparison
    • Curram S.P., and Mingers J. Neural networks, decision tree induction and discriminant analysis: An empirical comparison. Journal of the Operational Research Society 45 4 (1994) 440-450
    • (1994) Journal of the Operational Research Society , vol.45 , Issue.4 , pp. 440-450
    • Curram, S.P.1    Mingers, J.2
  • 14
    • 0030291564 scopus 로고    scopus 로고
    • A comparison of neural networks and linear scoring models in the credit union environment
    • Desai V.S., Crook J.N., and Overstreet G.A. A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research 95 (1996) 24-37
    • (1996) European Journal of Operational Research , vol.95 , pp. 24-37
    • Desai, V.S.1    Crook, J.N.2    Overstreet, G.A.3
  • 18
    • 84898990528 scopus 로고    scopus 로고
    • Balancing between bagging and bumping
    • MIT Press, Cambridge (pp. 466-472)
    • Heskes T. Balancing between bagging and bumping. Advances in Neural Information Processing Systems vol. 9 (1997), MIT Press, Cambridge (pp. 466-472)
    • (1997) Advances in Neural Information Processing Systems , vol.9
    • Heskes, T.1
  • 20
    • 0039623697 scopus 로고
    • Substantial doubt: Using artificial neural networks to evaluate going concern
    • JAI Press, Greenwich, CT
    • Klersey G.F., and Dugan M.T. Substantial doubt: Using artificial neural networks to evaluate going concern. Advances in Accounting Information Systems Vol. 9 (1995), JAI Press, Greenwich, CT 267-273
    • (1995) Advances in Accounting Information Systems , vol.9 , pp. 267-273
    • Klersey, G.F.1    Dugan, M.T.2
  • 21
    • 16244365542 scopus 로고    scopus 로고
    • A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms
    • Lee K., Booth D., and Alam P. A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications 29 (2005) 1-16
    • (2005) Expert Systems with Applications , vol.29 , pp. 1-16
    • Lee, K.1    Booth, D.2    Alam, P.3
  • 22
    • 0033730368 scopus 로고    scopus 로고
    • Nasir, M. L., John, R. I., & Bennett, S. C. (2000). Predicting corporate bankruptcy using modular neural networks. In IEEE International Conference on Computational Intelligence for Financial Engineering (pp. 86-91).
    • Nasir, M. L., John, R. I., & Bennett, S. C. (2000). Predicting corporate bankruptcy using modular neural networks. In IEEE International Conference on Computational Intelligence for Financial Engineering (pp. 86-91).
  • 23
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 18 1 (1980) 109-131
    • (1980) Journal of Accounting Research , vol.18 , Issue.1 , pp. 109-131
    • Ohlson, J.1
  • 24
    • 0004401956 scopus 로고    scopus 로고
    • Hybrid classifiers for financial multicriteria decision making: The case of bankruptcy prediction
    • Olmeda I., and Fernandez E. Hybrid classifiers for financial multicriteria decision making: The case of bankruptcy prediction. Computational Economics 10 (1997) 317-335
    • (1997) Computational Economics , vol.10 , pp. 317-335
    • Olmeda, I.1    Fernandez, E.2
  • 25
    • 11244338201 scopus 로고    scopus 로고
    • Pai, G. A. R., Annapoorani, R., & Pai, G. A. V. (2004). Performance analysis of a statistical and an evolutionary neural network based classifier for the prediction of industrial bankruptcy. In Conference on Cybernetics and Intelligent Systems, Singapore (pp. 1033-1038).
    • Pai, G. A. R., Annapoorani, R., & Pai, G. A. V. (2004). Performance analysis of a statistical and an evolutionary neural network based classifier for the prediction of industrial bankruptcy. In Conference on Cybernetics and Intelligent Systems, Singapore (pp. 1033-1038).
  • 26
    • 13544265385 scopus 로고    scopus 로고
    • A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem
    • Pendharkar P.C. A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem. Computers and Operations Research 32 (2005) 2561-2582
    • (2005) Computers and Operations Research , vol.32 , pp. 2561-2582
    • Pendharkar, P.C.1
  • 27
    • 0031185753 scopus 로고    scopus 로고
    • Using machine learning, neural networks, and statistics to predict corporate bankruptcy
    • Pompe P.P.M., and Feelders A.J. Using machine learning, neural networks, and statistics to predict corporate bankruptcy. Microcomputers in Civil Engineering 12 (1997) 267-276
    • (1997) Microcomputers in Civil Engineering , vol.12 , pp. 267-276
    • Pompe, P.P.M.1    Feelders, A.J.2
  • 29
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis
    • Zhang G., Hu M.Y., Patuwo B.E., and Indro D.C. Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European Journal of Operational Research 116 (1999) 16-32
    • (1999) European Journal of Operational Research , vol.116 , pp. 16-32
    • Zhang, G.1    Hu, M.Y.2    Patuwo, B.E.3    Indro, D.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.