-
1
-
-
53349170687
-
-
For recent reviews on aminocatalysis, see: a
-
For recent reviews on aminocatalysis, see: a) C. F. Barbas III, Angew. Chem. 2008, 120, 44;
-
(2008)
Angew. Chem
, vol.120
, pp. 44
-
-
Barbas III, C.F.1
-
3
-
-
55249111616
-
-
b) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. 2008, 120, 6232;
-
(2008)
Angew. Chem
, vol.120
, pp. 6232
-
-
Melchiorre, P.1
Marigo, M.2
Carlone, A.3
Bartoli, G.4
-
5
-
-
38349100690
-
-
c) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471;
-
(2007)
Chem. Rev
, vol.107
, pp. 5471
-
-
Mukherjee, S.1
Yang, J.W.2
Hoffmann, S.3
List, B.4
-
6
-
-
52149113820
-
-
for a commentary on the advent of asymmetric organocatalysis, see: d
-
for a commentary on the advent of asymmetric organocatalysis, see: d) D. W. C. MacMillan, Nature 2008, 455, 304.
-
(2008)
Nature
, vol.455
, pp. 304
-
-
MacMillan, D.W.C.1
-
8
-
-
0003913629
-
-
Ed, J. Otera, Wiley-WCH, Weinheim
-
a) Modern Carbonyl Chemistry (Ed.: J. Otera), Wiley-WCH, Weinheim, 2000;
-
(2000)
Modern Carbonyl Chemistry
-
-
-
9
-
-
60149097461
-
-
D. Caine in Comprehensive Organic Synthesis, 2 (Ed.: B. M. Trost), Pergamon Press, New York, 1991, Chapter 1.1, and references therein;
-
b) D. Caine in Comprehensive Organic Synthesis, Vol. 2 (Ed.: B. M. Trost), Pergamon Press, New York, 1991, Chapter 1.1, and references therein;
-
-
-
-
10
-
-
0042969710
-
-
Ed, J. D. Morrison, Academic Press, New York, Chapter 1;
-
c) D. A. Evans in Asymmetric Synthesis, Vol. 3 (Ed.: J. D. Morrison), Academic Press, New York, 1983, Chapter 1;
-
(1983)
Asymmetric Synthesis
, vol.3
-
-
Evans, D.A.1
-
11
-
-
0037128390
-
-
d) A. Job, C. F. Janeck, W. Bettray, R. Peters, D. Enders, Tetrahedron 2002, 58, 2253.
-
(2002)
Tetrahedron
, vol.58
, pp. 2253
-
-
Job, A.1
Janeck, C.F.2
Bettray, W.3
Peters, R.4
Enders, D.5
-
12
-
-
36949016625
-
-
For phase-transfer catalytic asymmetric α-alkylation of glycine derivatives, see: a
-
For phase-transfer catalytic asymmetric α-alkylation of glycine derivatives, see: a) T. Ooi, K. Maruoka, Angew. Chem. 2007, 119, 4300;
-
(2007)
Angew. Chem
, vol.119
, pp. 4300
-
-
Ooi, T.1
Maruoka, K.2
-
13
-
-
34447272888
-
-
and references therein;
-
Angew. Chem. Int. Ed. 2007, 46, 4222, and references therein;
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 4222
-
-
-
14
-
-
0001266486
-
-
for asymmetric alkylations of preformed lithium enolates with oligoamine catalysts, see: b
-
for asymmetric alkylations of preformed lithium enolates with oligoamine catalysts, see: b) M. Imai, A. Hagihara, H. Kawasaki, K. Manabe, K. Koga, J. Am. Chem. Soc. 1994, 116, 8829;
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 8829
-
-
Imai, M.1
Hagihara, A.2
Kawasaki, H.3
Manabe, K.4
Koga, K.5
-
15
-
-
11844283363
-
-
for metal-catalyzed alkylations of preformed tin enolates, see: c
-
for metal-catalyzed alkylations of preformed tin enolates, see: c) A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc. 2005, 127, 62;
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 62
-
-
Doyle, A.G.1
Jacobsen, E.N.2
-
16
-
-
41449104100
-
-
for a catalytic asymmetric alkylation of racemic a-bromo-esters, see: d
-
for a catalytic asymmetric alkylation of racemic a-bromo-esters, see: d) X. Dai, N. A. Strotman, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 3302.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 3302
-
-
Dai, X.1
Strotman, N.A.2
Fu, G.C.3
-
17
-
-
60149109098
-
-
The classic drawbacks associated with the stoichiometric alky-lation of preformed aldehyde enolates or enamines are atendency towards self-aldol condensation, the Canizzaro or Tischenko reactions, and O- or N-alkylations with the electro-philic alkyl halides; see: a G. Stork, A. Brizzolara, H. Landes-man, J. Szmuszkovicz, R. Terrell, J. Am. Chem. Soc. 1963, 85, 8829;
-
The classic drawbacks associated with the stoichiometric alky-lation of preformed aldehyde enolates or enamines are atendency towards self-aldol condensation, the Canizzaro or Tischenko reactions, and O- or N-alkylations with the electro-philic alkyl halides; see: a) G. Stork, A. Brizzolara, H. Landes-man, J. Szmuszkovicz, R. Terrell, J. Am. Chem. Soc. 1963, 85, 8829;
-
-
-
-
18
-
-
0000096952
-
-
b) H. O. House, W. C. Liang, P. D. Weeks, J. Org. Chem. 1974, 39, 3102.
-
(1974)
J. Org. Chem
, vol.39
, pp. 3102
-
-
House, H.O.1
Liang, W.C.2
Weeks, P.D.3
-
20
-
-
31144440036
-
-
for a mechanistic insight, see: b
-
for a mechanistic insight, see: b) A. Fu, B. List, W. Thiel, J. Org. Chem. 2006, 71, 320.
-
(2006)
J. Org. Chem
, vol.71
, pp. 320
-
-
Fu, A.1
List, B.2
Thiel, W.3
-
21
-
-
34848814187
-
-
As validation of its reliability and effectiveness, the enamine-catalyzed asymmetric intramolecular a-alkylation of aldehydes has recently been integrated into domino sequences, thus leading to the synthesis of complex cyclic molecules with high optical purity: a
-
As validation of its reliability and effectiveness, the enamine-catalyzed asymmetric intramolecular a-alkylation of aldehydes has recently been integrated into domino sequences, thus leading to the synthesis of complex cyclic molecules with high optical purity: a) H. Xie, L. Zu, H. Li, J. Wang, W. Wang, J. Am. Chem. Soc. 2007, 129, 10886;
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 10886
-
-
Xie, H.1
Zu, L.2
Li, H.3
Wang, J.4
Wang, W.5
-
22
-
-
34447533890
-
-
b) R. Rios, H. Sundén, J. Vesely, G.-L. Zhao, P. Dziedzic, A. Córdova, Adv. Synth. Catal. 2007, 349, 1028;
-
(2007)
Adv. Synth. Catal
, vol.349
, pp. 1028
-
-
Rios, R.1
Sundén, H.2
Vesely, J.3
Zhao, G.-L.4
Dziedzic, P.5
Córdova, A.6
-
23
-
-
55249099416
-
-
c) D. Enders, C. Wang, J. W. Bats, Angew. Chem. 2008, 120, 7649;
-
(2008)
Angew. Chem
, vol.120
, pp. 7649
-
-
Enders, D.1
Wang, C.2
Bats, J.W.3
-
27
-
-
34247565955
-
-
a) T. D. Beeson, A. Mastracchio, J.-B. Hong, K. Ashton, D. W. C. MacMillan, Science 2007, 316, 582;
-
(2007)
Science
, vol.316
, pp. 582
-
-
Beeson, T.D.1
Mastracchio, A.2
Hong, J.-B.3
Ashton, K.4
MacMillan, D.W.C.5
-
28
-
-
34250205588
-
-
b) H.-Y. Jang, J.-B. Hong, D. W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 7004;
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 7004
-
-
Jang, H.-Y.1
Hong, J.-B.2
MacMillan, D.W.C.3
-
29
-
-
40149110106
-
-
Chem. Soc, a SOMO activation mechanism has also been reported for the α-oxidation of aldehydes
-
c) H. Kim, D. W. C. MacMillan, J. Am. Chem. Soc. 2008, 130, 398; a SOMO activation mechanism has also been reported for the α-oxidation of aldehydes,
-
(2008)
J. Am
, vol.130
, pp. 398
-
-
Kim, H.1
MacMillan, D.W.C.2
-
32
-
-
0004269715
-
-
Eds, P. Renaud, M. P. Sibi, Wiley-VCH, Weinheim
-
b) Radicals in Organic Synthesis (Eds.: P. Renaud, M. P. Sibi), Wiley-VCH, Weinheim, 2001.
-
(2001)
Radicals in Organic Synthesis
-
-
-
33
-
-
53349143153
-
-
For a perspective on this discovery, see
-
For a perspective on this discovery, see: P. Renaud, P. Leong, Science 2008, 322, 55.
-
(2008)
Science
, vol.322
, pp. 55
-
-
Renaud, P.1
Leong, P.2
-
34
-
-
0039721999
-
-
a) A. Juris, S. Barigelletti, S. Campagna, V. Balzani, P. Belser, A. von Zelewsky, Coord. Chem. Rev. 1988, 84, 85;
-
(1988)
Coord. Chem. Rev
, vol.84
, pp. 85
-
-
Juris, A.1
Barigelletti, S.2
Campagna, S.3
Balzani, V.4
Belser, P.5
von Zelewsky, A.6
-
35
-
-
0040257744
-
-
b) V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 1996, 96, 759.
-
(1996)
Chem. Rev
, vol.96
, pp. 759
-
-
Balzani, V.1
Juris, A.2
Venturi, M.3
Campagna, S.4
Serroni, S.5
-
36
-
-
60149107279
-
-
In the course of luminescence-quenching studies, it was observed that preformed chiral enamines decreased the emission intensityof 6, while the presence of a-bromo carbonyl compounds did not. This result supports the mechanistic proposal that 6 is acting as an oxidant in the photoredox cycle
-
In the course of luminescence-quenching studies, it was observed that preformed chiral enamines decreased the emission intensityof 6, while the presence of a-bromo carbonyl compounds did not. This result supports the mechanistic proposal that 6 is acting as an oxidant in the photoredox cycle.
-
-
-
-
37
-
-
60149108935
-
-
Circumstantial evidence for the direct involvement of the enamine intermediate in the key bond-forming step has been collected. The coupling of an electron-rich enamine with electron-deficient radicals has the converse mechanism to that of the previously described SOMO-catalyzed reactions, where the susceptibility of the transient enamine for undergoing selective oxidation generates a reactive 3π-electron radical cation, see Ref, 9, This complementary reactivity further expands the synthetic potential of SOMO catalysis
-
Circumstantial evidence for the direct involvement of the enamine intermediate in the key bond-forming step has been collected. The coupling of an electron-rich enamine with electron-deficient radicals has the converse mechanism to that of the previously described SOMO-catalyzed reactions, where the susceptibility of the transient enamine for undergoing selective oxidation generates a reactive 3π-electron radical cation, see Ref. [9]. This complementary reactivity further expands the synthetic potential of SOMO catalysis.
-
-
-
-
38
-
-
24144502430
-
-
As a propagation step, the direct SET from the electron-rich α-amino radical 9 to the a-bromo carbonyl compound cannot be excluded. As a matter of fact, good results are obtained in the absence of any photoredox catalyst while irradiating the reaction mixture with a high-energy UV lamp. For an example of a catalytic enantioselective reaction driven by photo-induced electron transfer, see: A. Bauer, F. Westkaemper, S. Grimme, T. Bach, Nature 2005, 436, 1139.
-
As a propagation step, the direct SET from the electron-rich α-amino radical 9 to the a-bromo carbonyl compound cannot be excluded. As a matter of fact, good results are obtained in the absence of any photoredox catalyst while irradiating the reaction mixture with a high-energy UV lamp. For an example of a catalytic enantioselective reaction driven by photo-induced electron transfer, see: A. Bauer, F. Westkaemper, S. Grimme, T. Bach, Nature 2005, 436, 1139.
-
-
-
-
39
-
-
60149099273
-
-
The possibility to employ other activated alkyl bromides in the a-alkylation chemistry (e.g. the asymmetric benzylation of aldehydes using benzyl bromide) has been preliminary reported by D. W. C. MacMillan et al. at a recent conference: IASOC conference, Ischia (Italy), October 1, 2008.
-
The possibility to employ other activated alkyl bromides in the a-alkylation chemistry (e.g. the asymmetric benzylation of aldehydes using benzyl bromide) has been preliminary reported by D. W. C. MacMillan et al. at a recent conference: IASOC conference, Ischia (Italy), October 1, 2008.
-
-
-
-
40
-
-
33748870454
-
-
Enantioselective radical reactions catalyzed by chiral Lewis acids are nowadays a common practice in organic synthesis: a J. Zimmerman, M. P. Sibi, Top. Curr. Chem. 2006, 263, 107; however, only isolated examples of organocatalyzed asymmetric processes involving radical intermediates are known
-
Enantioselective radical reactions catalyzed by chiral Lewis acids are nowadays a common practice in organic synthesis: a) J. Zimmerman, M. P. Sibi, Top. Curr. Chem. 2006, 263, 107; however, only isolated examples of organocatalyzed asymmetric processes involving radical intermediates are known:
-
-
-
-
42
-
-
14744305220
-
-
c) T. Aechtner, M. Dressel, T. Bach, Angew. Chem. 2004, 116, 5974;
-
(2004)
Angew. Chem
, vol.116
, pp. 5974
-
-
Aechtner, T.1
Dressel, M.2
Bach, T.3
|