-
2
-
-
59649125437
-
Graphs cospectral with H (3, q) which are locally disjoint union of at most three complete graphs
-
Bang S., and Koolen J.H. Graphs cospectral with H (3, q) which are locally disjoint union of at most three complete graphs. Asian-European J. Math. 1 (2008) 147-156
-
(2008)
Asian-European J. Math.
, vol.1
, pp. 147-156
-
-
Bang, S.1
Koolen, J.H.2
-
3
-
-
44849121072
-
The Lollipop Graph is determined by its spectrum
-
Boulet R., and Jouve B. The Lollipop Graph is determined by its spectrum. Electron. J. Combin. 15 (2008) R74
-
(2008)
Electron. J. Combin.
, vol.15
-
-
Boulet, R.1
Jouve, B.2
-
4
-
-
6944247779
-
The graphs with spectral radius between 2 and sqrt(2 + sqrt(5))
-
Brouwer A.E., and Neumaier A. The graphs with spectral radius between 2 and sqrt(2 + sqrt(5)). Linear Algebra Appl. 114/115 (1989) 273-276
-
(1989)
Linear Algebra Appl.
, vol.114-115
, pp. 273-276
-
-
Brouwer, A.E.1
Neumaier, A.2
-
6
-
-
0344945604
-
Random strongly regular graphs?
-
Cameron P.J. Random strongly regular graphs?. Discrete Math. 273 (2003) 103-114
-
(2003)
Discrete Math.
, vol.273
, pp. 103-114
-
-
Cameron, P.J.1
-
7
-
-
24644517295
-
Strongly regular graphs
-
Beineke L.W., and Wilson R.J. (Eds), Cambridge Univ. Press
-
Cameron P.J. Strongly regular graphs. In: Beineke L.W., and Wilson R.J. (Eds). Topics in Algebraic Graph Theory (2004), Cambridge Univ. Press 203-221
-
(2004)
Topics in Algebraic Graph Theory
, pp. 203-221
-
-
Cameron, P.J.1
-
8
-
-
33646936116
-
Regularity and the generalized adjacency spectra of graphs
-
Chesnokov A.A., and Haemers W.H. Regularity and the generalized adjacency spectra of graphs. Linear Algebra Appl. 416 (2006) 1033-1037
-
(2006)
Linear Algebra Appl.
, vol.416
, pp. 1033-1037
-
-
Chesnokov, A.A.1
Haemers, W.H.2
-
9
-
-
0042113497
-
On the maximal number of orthogonal Latin squares of a given order
-
Chowla S., Erdös P., and Straus E.G. On the maximal number of orthogonal Latin squares of a given order. Canad. J. Math. 12 (1960) 204-208
-
(1960)
Canad. J. Math.
, vol.12
, pp. 204-208
-
-
Chowla, S.1
Erdös, P.2
Straus, E.G.3
-
10
-
-
33745855485
-
The uniqueness of the strongly regular graph srg(105,32,4,12)
-
Coolsaet K. The uniqueness of the strongly regular graph srg(105,32,4,12). Bull. Belg. Math. Soc. Simon Stevin 12 (2005) 707-718
-
(2005)
Bull. Belg. Math. Soc. Simon Stevin
, vol.12
, pp. 707-718
-
-
Coolsaet, K.1
-
11
-
-
0004092833
-
-
Johann Ambrosius Barth Verlag Deutscher Verlag der Wissenschaften, first ed. Berlin 1980; Academic Press, New York, 1980
-
Cvetković D.M., Doob M., and Sachs H. Spectra of Graphs. third ed. (1995), Johann Ambrosius Barth Verlag Deutscher Verlag der Wissenschaften, first ed. Berlin 1980; Academic Press, New York, 1980
-
(1995)
Spectra of Graphs. third ed.
-
-
Cvetković, D.M.1
Doob, M.2
Sachs, H.3
-
13
-
-
0141607701
-
Which graphs are determined by their spectrum?
-
van Dam E.R., and Haemers W.H. Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003) 241-272
-
(2003)
Linear Algebra Appl.
, vol.373
, pp. 241-272
-
-
van Dam, E.R.1
Haemers, W.H.2
-
16
-
-
24944535346
-
A new family of distance-regular graphs with unbounded diameter
-
van Dam E.R., and Koolen J.H. A new family of distance-regular graphs with unbounded diameter. Invent. Math. 162 (2005) 189-193
-
(2005)
Invent. Math.
, vol.162
, pp. 189-193
-
-
van Dam, E.R.1
Koolen, J.H.2
-
17
-
-
3242732271
-
Combinatorial designs with two singular values. I. Uniform multiplicative designs
-
van Dam E.R., and Spence E. Combinatorial designs with two singular values. I. Uniform multiplicative designs. J. Combin. Theory. A 107 (2004) 127-142
-
(2004)
J. Combin. Theory. A
, vol.107
, pp. 127-142
-
-
van Dam, E.R.1
Spence, E.2
-
18
-
-
11044221891
-
Combinatorial designs with two singular values. II. Partial geometric designs
-
van Dam E.R., and Spence E. Combinatorial designs with two singular values. II. Partial geometric designs. Linear Algebra Appl. 396 (2005) 303-316
-
(2005)
Linear Algebra Appl.
, vol.396
, pp. 303-316
-
-
van Dam, E.R.1
Spence, E.2
-
20
-
-
36249016382
-
Classification of some strongly regular subgraphs of the McLaughlin graph
-
Degraer J., and Coolsaet K. Classification of some strongly regular subgraphs of the McLaughlin graph. Discrete Math. 308 (2008) 395-400
-
(2008)
Discrete Math.
, vol.308
, pp. 395-400
-
-
Degraer, J.1
Coolsaet, K.2
-
21
-
-
0344526854
-
New prolific constructions of strongly regular graphs
-
Fon-Der-Flaass D.G. New prolific constructions of strongly regular graphs. Adv. Geom. 2 (2002) 301-306
-
(2002)
Adv. Geom.
, vol.2
, pp. 301-306
-
-
Fon-Der-Flaass, D.G.1
-
22
-
-
33750993774
-
Spectral characterization of graphs with index at most sqrt(2 + sqrt(5))
-
Ghareghani N., Omidi G.R., and Tayfeh-Rezaie B. Spectral characterization of graphs with index at most sqrt(2 + sqrt(5)). Linear Algebra Appl. 420 (2007) 483-489
-
(2007)
Linear Algebra Appl.
, vol.420
, pp. 483-489
-
-
Ghareghani, N.1
Omidi, G.R.2
Tayfeh-Rezaie, B.3
-
23
-
-
0043278321
-
Constructing cospectral graphs
-
Godsil C.D., and McKay B.D. Constructing cospectral graphs. Aequationes Math. 25 (1982) 257-268
-
(1982)
Aequationes Math.
, vol.25
, pp. 257-268
-
-
Godsil, C.D.1
McKay, B.D.2
-
24
-
-
0040167517
-
Products of graphs and their spectra
-
Combinatorial Mathematics IV. Casse L.R.A., and Wallis W.D. (Eds), Springer, Berlin
-
Godsil C.D., and McKay B.D. Products of graphs and their spectra. In: Casse L.R.A., and Wallis W.D. (Eds). Combinatorial Mathematics IV. Lecture Notes in Mathematics vol. 560 (1976), Springer, Berlin 61-72
-
(1976)
Lecture Notes in Mathematics
, vol.560
, pp. 61-72
-
-
Godsil, C.D.1
McKay, B.D.2
-
25
-
-
41549157330
-
Spectral characterizations of lollipop graphs
-
Haemers W.H., Liu X., and Zhang Y. Spectral characterizations of lollipop graphs. Linear Algebra Appl. 428 (2008) 2415-2423
-
(2008)
Linear Algebra Appl.
, vol.428
, pp. 2415-2423
-
-
Haemers, W.H.1
Liu, X.2
Zhang, Y.3
-
27
-
-
31244433837
-
Some results on graph spectra
-
Hagos E.M. Some results on graph spectra. Linear Algebra Appl. 356 (2002) 103-111
-
(2002)
Linear Algebra Appl.
, vol.356
, pp. 103-111
-
-
Hagos, E.M.1
-
28
-
-
0005232065
-
Laplacian spectra and spanning trees of threshold graphs
-
Hammer P.L., and Kelmans A.K. Laplacian spectra and spanning trees of threshold graphs. Discrete Appl. Math. 65 (1996) 255-273
-
(1996)
Discrete Appl. Math.
, vol.65
, pp. 255-273
-
-
Hammer, P.L.1
Kelmans, A.K.2
-
30
-
-
0347600332
-
Some results on starlike trees and sunlike graphs
-
Lepović M. Some results on starlike trees and sunlike graphs. J. Appl. Math. Comput. 11 (2003) 109-123
-
(2003)
J. Appl. Math. Comput.
, vol.11
, pp. 109-123
-
-
Lepović, M.1
-
31
-
-
31244437055
-
No starlike trees are cospectral
-
Lepović M., and Gutman I. No starlike trees are cospectral. Discrete Math. 242 (2002) 292-295
-
(2002)
Discrete Math.
, vol.242
, pp. 292-295
-
-
Lepović, M.1
Gutman, I.2
-
32
-
-
44649125969
-
The multi-fan graphs are determined by their Laplacian spectra
-
Liu X., Zhang Y., and Gui X. The multi-fan graphs are determined by their Laplacian spectra. Discrete Math. 308 (2008) 4267-4271
-
(2008)
Discrete Math.
, vol.308
, pp. 4267-4271
-
-
Liu, X.1
Zhang, Y.2
Gui, X.3
-
33
-
-
33847271607
-
A generalization of Wallis-Fon-Der-Flaass construction of strongly regular graphs
-
Muzychuk M. A generalization of Wallis-Fon-Der-Flaass construction of strongly regular graphs. J. Algebraic Combin. 25 (2007) 169-187
-
(2007)
J. Algebraic Combin.
, vol.25
, pp. 169-187
-
-
Muzychuk, M.1
-
34
-
-
0042160391
-
Strongly regular graphs with smallest eigenvalue - m
-
Neumaier A. Strongly regular graphs with smallest eigenvalue - m. Arch. Math. 33 (1979) 391-400
-
(1979)
Arch. Math.
, vol.33
, pp. 391-400
-
-
Neumaier, A.1
-
35
-
-
33847273846
-
Starlike trees are determined by their Laplacian spectrum
-
Omidi G.R., and Tajbakhsh K. Starlike trees are determined by their Laplacian spectrum. Linear Algebra Appl. 422 (2007) 654-658
-
(2007)
Linear Algebra Appl.
, vol.422
, pp. 654-658
-
-
Omidi, G.R.1
Tajbakhsh, K.2
-
37
-
-
0039155261
-
Some properties of the spectrum of a graph
-
Guy R., et al. (Ed), Gordon and Breach, New York
-
Smith J.H. Some properties of the spectrum of a graph. In: Guy R., et al. (Ed). Combinatorial Structures and their Applications (Proc. Conf. Calgary, 1969) (1970), Gordon and Breach, New York 403-406
-
(1970)
Combinatorial Structures and their Applications (Proc. Conf. Calgary, 1969)
, pp. 403-406
-
-
Smith, J.H.1
-
38
-
-
33947242274
-
Research problems from the Aveiro Workshop on Graph Spectra
-
Stevanović D. Research problems from the Aveiro Workshop on Graph Spectra. Linear Algebra Appl. 423 (2007) 172-181
-
(2007)
Linear Algebra Appl.
, vol.423
, pp. 172-181
-
-
Stevanović, D.1
-
39
-
-
1842472316
-
On the embedding of graphs into graphs with few eigenvalues
-
Vu V.H. On the embedding of graphs into graphs with few eigenvalues. J. Graph Theory 22 (1996) 137-149
-
(1996)
J. Graph Theory
, vol.22
, pp. 137-149
-
-
Vu, V.H.1
-
40
-
-
33646099821
-
A sufficient condition for a family of graphs being determined by their generalized spectra
-
Wang W., and Xu C.-X. A sufficient condition for a family of graphs being determined by their generalized spectra. European J. Combin. 27 (2006) 826-840
-
(2006)
European J. Combin.
, vol.27
, pp. 826-840
-
-
Wang, W.1
Xu, C.-X.2
-
41
-
-
33644863426
-
On the spectral characterization of T-shape trees
-
Wang W., and Xu C.-X. On the spectral characterization of T-shape trees. Linear Algebra Appl. 414 (2006) 492-501
-
(2006)
Linear Algebra Appl.
, vol.414
, pp. 492-501
-
-
Wang, W.1
Xu, C.-X.2
-
42
-
-
33747830267
-
An excluding algorithm for testing whether a family of graphs are determined by their generalized spectra
-
Wang W., and Xu C.-X. An excluding algorithm for testing whether a family of graphs are determined by their generalized spectra. Linear Algebra Appl. 418 (2006) 62-74
-
(2006)
Linear Algebra Appl.
, vol.418
, pp. 62-74
-
-
Wang, W.1
Xu, C.-X.2
-
43
-
-
34249658532
-
Note: On the generalized spectral characterization of graphs having an isolated vertex
-
Wang W., and Xu C.-X. Note: On the generalized spectral characterization of graphs having an isolated vertex. Linear Algebra Appl. 425 (2007) 210-215
-
(2007)
Linear Algebra Appl.
, vol.425
, pp. 210-215
-
-
Wang, W.1
Xu, C.-X.2
-
44
-
-
0002662279
-
An existence theory for pairwise balanced designs, III: Proof of the existence conjectures
-
Wilson R.M. An existence theory for pairwise balanced designs, III: Proof of the existence conjectures. J. Combin. Theory A 18 (1975) 71-79
-
(1975)
J. Combin. Theory A
, vol.18
, pp. 71-79
-
-
Wilson, R.M.1
-
45
-
-
36949039458
-
On graphs whose spectral radius is bounded by frac(3, 2) sqrt(2)
-
Woo R., and Neumaier A. On graphs whose spectral radius is bounded by frac(3, 2) sqrt(2). Graphs Combin. 23 (2007) 713-726
-
(2007)
Graphs Combin.
, vol.23
, pp. 713-726
-
-
Woo, R.1
Neumaier, A.2
|