-
3
-
-
33646077953
-
-
North-Holland, Amsterdam
-
Cvetković D.M., Doob M., Gutman I., and Torgašev A. Recent Results in the Theory of Graphs Spectra. Annals of Discrete Mathematics vol. 36 (1988), North-Holland, Amsterdam
-
(1988)
Annals of Discrete Mathematics
, vol.36
-
-
Cvetković, D.M.1
Doob, M.2
Gutman, I.3
Torgašev, A.4
-
5
-
-
0141607701
-
Which graphs are determined by their spectrum?
-
van Dam E.R., and Haemers W.H. Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003) 241-272
-
(2003)
Linear Algebra Appl.
, vol.373
, pp. 241-272
-
-
van Dam, E.R.1
Haemers, W.H.2
-
6
-
-
31244435712
-
The complement of the path is determined by its spectrum
-
Doob M., and Haemers W.H. The complement of the path is determined by its spectrum. Linear Algebra Appl. 356 (2002) 57-65
-
(2002)
Linear Algebra Appl.
, vol.356
, pp. 57-65
-
-
Doob, M.1
Haemers, W.H.2
-
7
-
-
0141818748
-
Some computational results on the spectra of graphs
-
Combinatorial Mathematics IV, Springer-Verlag, Berlin
-
Godsil C.D., and McKay B.D. Some computational results on the spectra of graphs. Combinatorial Mathematics IV. Lecture Notes in Mathematics vol. 560 (1976), Springer-Verlag, Berlin 73-92
-
(1976)
Lecture Notes in Mathematics
, vol.560
, pp. 73-92
-
-
Godsil, C.D.1
McKay, B.D.2
-
9
-
-
0742267980
-
Enumeration of cospectral graphs
-
Haemers W.H., and Spence E. Enumeration of cospectral graphs. European J. Combin. 25 (2004) 199-211
-
(2004)
European J. Combin.
, vol.25
, pp. 199-211
-
-
Haemers, W.H.1
Spence, E.2
-
10
-
-
31244433837
-
Some results on graph spectra
-
Hagos E.M. Some results on graph spectra. Linear Algebra Appl. 356 (2002) 103-111
-
(2002)
Linear Algebra Appl.
, vol.356
, pp. 103-111
-
-
Hagos, E.M.1
-
11
-
-
31244437055
-
No starlike trees are cospectral
-
Lepović M., and Gutman I. No starlike trees are cospectral. Discrete Math. 242 (2002) 291-295
-
(2002)
Discrete Math.
, vol.242
, pp. 291-295
-
-
Lepović, M.1
Gutman, I.2
-
12
-
-
0001633258
-
On the spectral characterization of trees
-
McKay B.D. On the spectral characterization of trees. Ars Combin. 3 (1979) 219-232
-
(1979)
Ars Combin.
, vol.3
, pp. 219-232
-
-
McKay, B.D.1
-
13
-
-
0002874852
-
Almost all trees are cospectral
-
Harary F. (Ed), Academic Press, New York
-
Schwenk A.J. Almost all trees are cospectral. In: Harary F. (Ed). New Directions in the Theory of Graphs (1973), Academic Press, New York 275-307
-
(1973)
New Directions in the Theory of Graphs
, pp. 275-307
-
-
Schwenk, A.J.1
-
14
-
-
0141779208
-
Large families of cospectral graphs
-
Seress A. Large families of cospectral graphs. Des. Codes Cryptogr. 21 (2000) 205-208
-
(2000)
Des. Codes Cryptogr.
, vol.21
, pp. 205-208
-
-
Seress, A.1
|