-
3
-
-
0007014379
-
Spanning tree formulas and Chebyshev polynomials
-
Boesch F.T., and Prodinger H. Spanning tree formulas and Chebyshev polynomials. Graphs Combin. 2 (1986) 191-200
-
(1986)
Graphs Combin.
, vol.2
, pp. 191-200
-
-
Boesch, F.T.1
Prodinger, H.2
-
4
-
-
14744269887
-
The Laplacian spectrum of a graph
-
Das K.C. The Laplacian spectrum of a graph. Comput. Math. Appl. 48 (2004) 715-724
-
(2004)
Comput. Math. Appl.
, vol.48
, pp. 715-724
-
-
Das, K.C.1
-
5
-
-
0042158972
-
Bounds for eigenvalues of doubly stochastic matrices
-
Fiedler M. Bounds for eigenvalues of doubly stochastic matrices. Linear Algebra Appl. 5 (1972) 299-310
-
(1972)
Linear Algebra Appl.
, vol.5
, pp. 299-310
-
-
Fiedler, M.1
-
6
-
-
33750993774
-
Spectral characterization of graphs with index at most sqrt(2 + sqrt(5))
-
Ghareghai N., Omidi G.R., and Tayfeh-Rezaie B. Spectral characterization of graphs with index at most sqrt(2 + sqrt(5)). Linear Algebra Appl. 420 (2007) 483-489
-
(2007)
Linear Algebra Appl.
, vol.420
, pp. 483-489
-
-
Ghareghai, N.1
Omidi, G.R.2
Tayfeh-Rezaie, B.3
-
7
-
-
0011552122
-
The number of trees in a graph I, II
-
and 27 (1966) 233-241 (Translated from Avtomat. i Telemekh. 26 (1965) 2194-2204 and 27 (1966) 56-65 [in Russian])
-
Kelmans A.K. The number of trees in a graph I, II. Automat. Remote Control 26 (1965) 2118-2129 and 27 (1966) 233-241 (Translated from Avtomat. i Telemekh. 26 (1965) 2194-2204 and 27 (1966) 56-65 [in Russian])
-
(1965)
Automat. Remote Control
, vol.26
, pp. 2118-2129
-
-
Kelmans, A.K.1
-
8
-
-
0040555950
-
A certain polynomial of a graph and graphs with an extremal number of trees
-
Kelmans A.K., and Chelnokov V.M. A certain polynomial of a graph and graphs with an extremal number of trees. J. Combin. Theory Ser. B 16 (1974) 197-214
-
(1974)
J. Combin. Theory Ser. B
, vol.16
, pp. 197-214
-
-
Kelmans, A.K.1
Chelnokov, V.M.2
-
9
-
-
0000320947
-
A note on the second largest eigenvalue of the Laplacian matrix of a graph
-
Li J.-S., and Pan Y.-L. A note on the second largest eigenvalue of the Laplacian matrix of a graph. Linear and Multilinear Algebra 48 20 (2000) 117-121
-
(2000)
Linear and Multilinear Algebra
, vol.48
, Issue.20
, pp. 117-121
-
-
Li, J.-S.1
Pan, Y.-L.2
-
10
-
-
33847273846
-
Starlike trees are determined by their Laplacian spectrum
-
Omidi G.R., and Tajbakhsh K. Starlike trees are determined by their Laplacian spectrum. Linear Algebra Appl. 422 (2007) 654-658
-
(2007)
Linear Algebra Appl.
, vol.422
, pp. 654-658
-
-
Omidi, G.R.1
Tajbakhsh, K.2
-
12
-
-
0141607701
-
Which graphs are determined by their spectrum?
-
van Dam E.R., and Haemers W.H. Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003) 241-272
-
(2003)
Linear Algebra Appl.
, vol.373
, pp. 241-272
-
-
van Dam, E.R.1
Haemers, W.H.2
-
13
-
-
33644863426
-
On the spectral characterization of T-shape trees
-
Wang W., and Xu C.-X. On the spectral characterization of T-shape trees. Linear Algebra Appl. 414 (2006) 492-501
-
(2006)
Linear Algebra Appl.
, vol.414
, pp. 492-501
-
-
Wang, W.1
Xu, C.-X.2
-
14
-
-
33748309452
-
Note: the T-shape tree is determined by its Laplacian spectrum
-
Wang W., and Xu C.-X. Note: the T-shape tree is determined by its Laplacian spectrum. Linear Algebra Appl. 419 (2006) 78-81
-
(2006)
Linear Algebra Appl.
, vol.419
, pp. 78-81
-
-
Wang, W.1
Xu, C.-X.2
|