메뉴 건너뛰기




Volumn 220, Issue 4, 2009, Pages 451-461

A new procedure to optimize the selection of groups in a classification tree: Applications for ecological data

Author keywords

Classification; Clustering; Dendrogram; Outliers; Stopping rule

Indexed keywords

STATISTICAL TESTS; TREES (MATHEMATICS);

EID: 59149096358     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2008.11.006     Document Type: Article
Times cited : (12)

References (44)
  • 1
    • 0016355478 scopus 로고
    • New look at statistical-model identification
    • Akaike H. New look at statistical-model identification. IEEE Trans. Automat. Contr. 19 (1974) 716-723
    • (1974) IEEE Trans. Automat. Contr. , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0034477220 scopus 로고    scopus 로고
    • Resolving environmental disputes: a statistical method for choosing among competing cluster models
    • Anderson M.J., and Clements A. Resolving environmental disputes: a statistical method for choosing among competing cluster models. Ecol. Appl. 10 (2000) 1341-1355
    • (2000) Ecol. Appl. , vol.10 , pp. 1341-1355
    • Anderson, M.J.1    Clements, A.2
  • 3
    • 17044414539 scopus 로고    scopus 로고
    • Monitoring pelagic ecosystems using plankton indicators
    • Beaugrand G. Monitoring pelagic ecosystems using plankton indicators. ICES J. Mar. Sci. 62 (2005) 333-338
    • (2005) ICES J. Mar. Sci. , vol.62 , pp. 333-338
    • Beaugrand, G.1
  • 4
    • 0037013096 scopus 로고    scopus 로고
    • Diversity of calanoid copepods in the North Atlantic and adjacent seas: species associations and biogeography
    • Beaugrand G., Ibanez F., Lindley J.A., and Reid P.C. Diversity of calanoid copepods in the North Atlantic and adjacent seas: species associations and biogeography. Mar. Ecol. Prog. Ser. 232 (2002) 179-195
    • (2002) Mar. Ecol. Prog. Ser. , vol.232 , pp. 179-195
    • Beaugrand, G.1    Ibanez, F.2    Lindley, J.A.3    Reid, P.C.4
  • 5
    • 26444485631 scopus 로고    scopus 로고
    • Loevinger's measures of rule quality for assessing cluster stability
    • Bertrand P., and Mufti G.B. Loevinger's measures of rule quality for assessing cluster stability. Comput. Stat. Data Anal. 50 (2006) 992-1015
    • (2006) Comput. Stat. Data Anal. , vol.50 , pp. 992-1015
    • Bertrand, P.1    Mufti, G.B.2
  • 6
    • 0000902522 scopus 로고    scopus 로고
    • Data clustering using a model granular magnet
    • Blatt M., Wiseman S., and Domany E. Data clustering using a model granular magnet. Neural Comput. 9 (1997) 1805-1842
    • (1997) Neural Comput. , vol.9 , pp. 1805-1842
    • Blatt, M.1    Wiseman, S.2    Domany, E.3
  • 8
    • 33746774394 scopus 로고    scopus 로고
    • Calcagno, V., Mouquet, N., Jarne, P., David, P., 2006. Rejoinder to Calcagno et al. (2006): Which immigration policy for optimal coexistence? Ecol. Lett. 9, 909-911.
    • Calcagno, V., Mouquet, N., Jarne, P., David, P., 2006. Rejoinder to Calcagno et al. (2006): Which immigration policy for optimal coexistence? Ecol. Lett. 9, 909-911.
  • 9
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • Calinski R.B., and Harabasz J. A dendrite method for cluster analysis. Commun. Stat. 3 (1974) 1-27
    • (1974) Commun. Stat. , vol.3 , pp. 1-27
    • Calinski, R.B.1    Harabasz, J.2
  • 10
    • 0030426363 scopus 로고    scopus 로고
    • Patternizing communities by using an artificial neural network
    • Chon T.S., Park Y.S., Moon K.H., and Cha E.Y. Patternizing communities by using an artificial neural network. Ecol. Model. 90 (1996) 69-78
    • (1996) Ecol. Model. , vol.90 , pp. 69-78
    • Chon, T.S.1    Park, Y.S.2    Moon, K.H.3    Cha, E.Y.4
  • 11
    • 0034734108 scopus 로고    scopus 로고
    • Determining temporal pattern of community dynamics by using unsupervised learning algorithms
    • Chon T.S., Park Y.S., and Park J.H. Determining temporal pattern of community dynamics by using unsupervised learning algorithms. Ecol. Model. 132 (2000) 151-166
    • (2000) Ecol. Model. , vol.132 , pp. 151-166
    • Chon, T.S.1    Park, Y.S.2    Park, J.H.3
  • 12
    • 0001994373 scopus 로고
    • Cluster analysis and related issues
    • Chen C.H., Pau L.F., and Wang P.S.P. (Eds), World Scientific Publishing Company, Singapore
    • Dubes R.C. Cluster analysis and related issues. In: Chen C.H., Pau L.F., and Wang P.S.P. (Eds). Handbook of Pattern Recognition and Computer Vision (1993), World Scientific Publishing Company, Singapore 3-32
    • (1993) Handbook of Pattern Recognition and Computer Vision , pp. 3-32
    • Dubes, R.C.1
  • 13
    • 0031284508 scopus 로고    scopus 로고
    • Species assemblages and indicator species: the need for a flexible asymmetrical approach
    • Dufrene M., and Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67 (1997) 345-366
    • (1997) Ecol. Monogr. , vol.67 , pp. 345-366
    • Dufrene, M.1    Legendre, P.2
  • 15
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugenic. 7 (1936) 179-188
    • (1936) Ann. Eugenic. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 16
    • 34248971907 scopus 로고
    • On grouping for maximum homogeneity
    • Fisher W.D. On grouping for maximum homogeneity. J. Am. Stat. Assoc. 53 (1958) 789-798
    • (1958) J. Am. Stat. Assoc. , vol.53 , pp. 789-798
    • Fisher, W.D.1
  • 17
    • 84957012677 scopus 로고    scopus 로고
    • Finding consistent clusters in data partitions
    • Kittler J., and Roli F. (Eds), Springer-Verlag, Berlin/Heidelberg/Cambridge, UK
    • Fred A. Finding consistent clusters in data partitions. In: Kittler J., and Roli F. (Eds). Multiple Classifier Systems: Second International Workshop (2001), Springer-Verlag, Berlin/Heidelberg/Cambridge, UK 309-318
    • (2001) Multiple Classifier Systems: Second International Workshop , pp. 309-318
    • Fred, A.1
  • 18
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • Getz G., Levine E., and Domany E. Coupled two-way clustering analysis of gene microarray data. Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 12079-12084
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 12079-12084
    • Getz, G.1    Levine, E.2    Domany, E.3
  • 19
    • 0002584685 scopus 로고    scopus 로고
    • A survey of constrained classification
    • Gordon A.D. A survey of constrained classification. Comput. Stat. Data Anal. 21 (1996) 17-29
    • (1996) Comput. Stat. Data Anal. , vol.21 , pp. 17-29
    • Gordon, A.D.1
  • 20
    • 33748787698 scopus 로고    scopus 로고
    • Revealing spatial genetic structure through cluster analyses
    • Gregorius H.-R. Revealing spatial genetic structure through cluster analyses. Ecol. Model. 198 (2006) 312-320
    • (2006) Ecol. Model. , vol.198 , pp. 312-320
    • Gregorius, H.-R.1
  • 21
    • 0034610199 scopus 로고    scopus 로고
    • Predictive habitat distribution models in ecology
    • Guisan A., and Zimmermann N.E. Predictive habitat distribution models in ecology. Ecol. Model. 135 (2000) 147-186
    • (2000) Ecol. Model. , vol.135 , pp. 147-186
    • Guisan, A.1    Zimmermann, N.E.2
  • 22
    • 0036565310 scopus 로고    scopus 로고
    • Cluster number selection for a small set of samples using the Bayesian Ying-Yang model
    • Guo P., Chen C.L.P., and Lyu M.R. Cluster number selection for a small set of samples using the Bayesian Ying-Yang model. IEEE Trans. Neural Network 13 (2002) 757-763
    • (2002) IEEE Trans. Neural Network , vol.13 , pp. 757-763
    • Guo, P.1    Chen, C.L.P.2    Lyu, M.R.3
  • 23
    • 33845291376 scopus 로고    scopus 로고
    • Investigation on several model selection criteria for determining the number of cluster
    • Hu X., and Xu L. Investigation on several model selection criteria for determining the number of cluster. Neural Inform. Process. 4 (2004) 1-10
    • (2004) Neural Inform. Process. , vol.4 , pp. 1-10
    • Hu, X.1    Xu, L.2
  • 24
    • 0001907889 scopus 로고
    • Spatio-temporal analysis of sampling process in planktology, its influence on interpretation of data by principal component analysis
    • Ibanez F. Spatio-temporal analysis of sampling process in planktology, its influence on interpretation of data by principal component analysis. Ann. I. Oceanogr. Paris 49 (1973) 83-111
    • (1973) Ann. I. Oceanogr. Paris , vol.49 , pp. 83-111
    • Ibanez, F.1
  • 26
    • 0003126317 scopus 로고
    • A general theory of classificatory sorting strategies.1. Hierarchical systems
    • Lance G.N., and Williams W.T. A general theory of classificatory sorting strategies.1. Hierarchical systems. Comput. J. 9 (1967) 373-380
    • (1967) Comput. J. , vol.9 , pp. 373-380
    • Lance, G.N.1    Williams, W.T.2
  • 28
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek S., and Guegan J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 120 (1999) 65-73
    • (1999) Ecol. Model. , vol.120 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 29
    • 0032594811 scopus 로고    scopus 로고
    • Applying genetic algorithms to search for the best hierarchical clustering of a dataset
    • Lozano J.A., and Larranaga P. Applying genetic algorithms to search for the best hierarchical clustering of a dataset. Pattern Recogn. Lett. 20 (1999) 911-918
    • (1999) Pattern Recogn. Lett. , vol.20 , pp. 911-918
    • Lozano, J.A.1    Larranaga, P.2
  • 31
    • 0026273281 scopus 로고
    • Classification and ordination of limnological data-a comparison of analytical tools
    • Matthews R.A., Matthews G.B., and Ehinger W.J. Classification and ordination of limnological data-a comparison of analytical tools. Ecol. Model. 53 (1991) 167-187
    • (1991) Ecol. Model. , vol.53 , pp. 167-187
    • Matthews, R.A.1    Matthews, G.B.2    Ehinger, W.J.3
  • 32
    • 0000228352 scopus 로고
    • A Monte-Carlo study of thirty internal criterion measures for cluster-analysis
    • Milligan G.W. A Monte-Carlo study of thirty internal criterion measures for cluster-analysis. Psychometrika 46 (1981) 187-199
    • (1981) Psychometrika , vol.46 , pp. 187-199
    • Milligan, G.W.1
  • 33
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan G.W., and Cooper M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50 (1985) 159-179
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 34
    • 84902206349 scopus 로고    scopus 로고
    • Detecting the number of clusters using a support vector machine approach
    • Moguerza J.M., Munoz A., and Martin-Merino M. Detecting the number of clusters using a support vector machine approach. Lect. Notes Comput. Sci. 2415 (2002) 763-768
    • (2002) Lect. Notes Comput. Sci. , vol.2415 , pp. 763-768
    • Moguerza, J.M.1    Munoz, A.2    Martin-Merino, M.3
  • 37
    • 0038066412 scopus 로고    scopus 로고
    • Are ecological groups of species optimal for forest dynamics modelling?
    • Picard N., and Franc A. Are ecological groups of species optimal for forest dynamics modelling?. Ecol. Model. 163 (2003) 175-186
    • (2003) Ecol. Model. , vol.163 , pp. 175-186
    • Picard, N.1    Franc, A.2
  • 38
    • 0002427457 scopus 로고    scopus 로고
    • Explanatory variables in classifications and the detection of the optimum number of clusters
    • Hayashi C., Yajima K., Bock H.H., Ohsumi N., Tanaka Y., and Baba Y. (Eds), Springer-Verlag, Japan, Tokyo
    • Podani J. Explanatory variables in classifications and the detection of the optimum number of clusters. In: Hayashi C., Yajima K., Bock H.H., Ohsumi N., Tanaka Y., and Baba Y. (Eds). Data Science, Classification and Related Methods (1998), Springer-Verlag, Japan, Tokyo 125-132
    • (1998) Data Science, Classification and Related Methods , pp. 125-132
    • Podani, J.1
  • 39
    • 0034118493 scopus 로고    scopus 로고
    • Inference of population structure using multilocus genotype data
    • Pritchard J.K., Stephens M., and Donnelly P. Inference of population structure using multilocus genotype data. Genetics 155 (2000) 945-959
    • (2000) Genetics , vol.155 , pp. 945-959
    • Pritchard, J.K.1    Stephens, M.2    Donnelly, P.3
  • 40
    • 59149089133 scopus 로고    scopus 로고
    • Sarle, W., 1983. Cubic Clustering Criterion. Technical report No. A-108. SAS Institute Inc, Cary, NC.
    • Sarle, W., 1983. Cubic Clustering Criterion. Technical report No. A-108. SAS Institute Inc, Cary, NC.
  • 41
    • 15444362001 scopus 로고    scopus 로고
    • Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness
    • Schloss P.D., and Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71 (2005) 1501-1506
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 1501-1506
    • Schloss, P.D.1    Handelsman, J.2
  • 42
    • 0000120766 scopus 로고
    • Estimating dimension of a model
    • Schwarz G. Estimating dimension of a model. Ann. Stat. 6 (1978) 461-464
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 43
    • 0035670049 scopus 로고    scopus 로고
    • Unsupervised pattern recognition for the interpretation of ecological data
    • Walley W.J., and O'Connor M.A. Unsupervised pattern recognition for the interpretation of ecological data. Ecol. Model. 146 (2001) 219-230
    • (2001) Ecol. Model. , vol.146 , pp. 219-230
    • Walley, W.J.1    O'Connor, M.A.2
  • 44
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R., and Wunsch D. Survey of clustering algorithms. IEEE Trans. Neural Network 16 (2005) 645-678
    • (2005) IEEE Trans. Neural Network , vol.16 , pp. 645-678
    • Xu, R.1    Wunsch, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.