-
2
-
-
0033283778
-
Fast approximate energy minimization via graph cuts
-
Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. ICCV, pages 377-384, 1999.
-
(1999)
ICCV
, pp. 377-384
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
3
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
4
-
-
0031361611
-
Machine-learning research: Four current directions
-
T. G. Dietterich. Machine-learning research: Four current directions. The AI Magazine, 18(4):97-136, 1998.
-
(1998)
The AI Magazine
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
5
-
-
22944435196
-
Kernel based method for segmentation and modeling of magnetic resonance images
-
Oct
-
C. Garcia and J. Moreno. Kernel based method for segmentation and modeling of magnetic resonance images. LNCS, 3315:636-645, Oct 2004.
-
(2004)
LNCS
, vol.3315
, pp. 636-645
-
-
Garcia, C.1
Moreno, J.2
-
6
-
-
0004283231
-
-
M. I. Jordan, editor. MIT Press
-
M. I. Jordan, editor. Learning in Graphical Models. MIT Press, 1999.
-
(1999)
Learning in Graphical Models
-
-
-
7
-
-
0035140334
-
Automated segmentation of MR images of brain tumors
-
M. Kaus, S. Warfield, A. Nabavi, P. Black, F. Jolesz, and R. Kikinis. Automated segmentation of MR images of brain tumors. Radiology, 218:586-591, 2001.
-
(2001)
Radiology
, vol.218
, pp. 586-591
-
-
Kaus, M.1
Warfield, S.2
Nabavi, A.3
Black, P.4
Jolesz, F.5
Kikinis, R.6
-
9
-
-
14344259223
-
Discriminative fields for modeling spatial dependencies in natural images
-
S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies in natural images. NIPS, 2003.
-
(2003)
NIPS
-
-
Kumar, S.1
Hebert, M.2
-
10
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, F. Pereira, and A. McCallum. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.1
Pereira, F.2
McCallum, A.3
-
11
-
-
33646680621
-
Support vector random fields for spatial classification
-
C. Lee, M. Schmidt, and R. Greiner. Support vector random fields for spatial classification. PKDD, 2005.
-
(2005)
PKDD
-
-
Lee, C.1
Schmidt, M.2
Greiner, R.3
-
14
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press
-
J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods - Support Vector Learning, pages 185-208. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
18
-
-
31844456848
-
Learning associative markov networks
-
New York, NY, USA, ACM Press
-
B. Taskar, V. Chatalbashev, and D. Koller. Learning associative markov networks. In ICML '04, page 102, New York, NY, USA, 2004. ACM Press.
-
(2004)
ICML '04
, pp. 102
-
-
Taskar, B.1
Chatalbashev, V.2
Koller, D.3
-
19
-
-
84899024607
-
Contextual models for object detection using boosted random fields
-
MIT Press, Cambridge, MA
-
A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted random fields. In NIPS 17. MIT Press, Cambridge, MA, 2005.
-
(2005)
NIPS
, vol.17
-
-
Torralba, A.1
Murphy, K.P.2
Freeman, W.T.3
-
20
-
-
24944435111
-
Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine
-
J. Zhang, K. Ma, M. Er, and V. Chong. Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. International Workshop on Advanced Image Technology, pages 207-211, 2004.
-
(2004)
International Workshop on Advanced Image Technology
, pp. 207-211
-
-
Zhang, J.1
Ma, K.2
Er, M.3
Chong, V.4
|