메뉴 건너뛰기




Volumn 4213 LNAI, Issue , 2006, Pages 272-283

Efficient spatial classification using decoupled conditional random fields

Author keywords

[No Author keywords available]

Indexed keywords

DATA PROCESSING; DATA STRUCTURES; DATABASE SYSTEMS; LEARNING SYSTEMS; MARKOV PROCESSES;

EID: 33750334100     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11871637_28     Document Type: Conference Paper
Times cited : (10)

References (20)
  • 2
    • 0033283778 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. ICCV, pages 377-384, 1999.
    • (1999) ICCV , pp. 377-384
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 4
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • T. G. Dietterich. Machine-learning research: Four current directions. The AI Magazine, 18(4):97-136, 1998.
    • (1998) The AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 5
    • 22944435196 scopus 로고    scopus 로고
    • Kernel based method for segmentation and modeling of magnetic resonance images
    • Oct
    • C. Garcia and J. Moreno. Kernel based method for segmentation and modeling of magnetic resonance images. LNCS, 3315:636-645, Oct 2004.
    • (2004) LNCS , vol.3315 , pp. 636-645
    • Garcia, C.1    Moreno, J.2
  • 6
    • 0004283231 scopus 로고    scopus 로고
    • M. I. Jordan, editor. MIT Press
    • M. I. Jordan, editor. Learning in Graphical Models. MIT Press, 1999.
    • (1999) Learning in Graphical Models
  • 9
    • 14344259223 scopus 로고    scopus 로고
    • Discriminative fields for modeling spatial dependencies in natural images
    • S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies in natural images. NIPS, 2003.
    • (2003) NIPS
    • Kumar, S.1    Hebert, M.2
  • 10
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, F. Pereira, and A. McCallum. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    Pereira, F.2    McCallum, A.3
  • 11
    • 33646680621 scopus 로고    scopus 로고
    • Support vector random fields for spatial classification
    • C. Lee, M. Schmidt, and R. Greiner. Support vector random fields for spatial classification. PKDD, 2005.
    • (2005) PKDD
    • Lee, C.1    Schmidt, M.2    Greiner, R.3
  • 14
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods - Support Vector Learning, pages 185-208. MIT Press, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 18
    • 31844456848 scopus 로고    scopus 로고
    • Learning associative markov networks
    • New York, NY, USA, ACM Press
    • B. Taskar, V. Chatalbashev, and D. Koller. Learning associative markov networks. In ICML '04, page 102, New York, NY, USA, 2004. ACM Press.
    • (2004) ICML '04 , pp. 102
    • Taskar, B.1    Chatalbashev, V.2    Koller, D.3
  • 19
    • 84899024607 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted random fields
    • MIT Press, Cambridge, MA
    • A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted random fields. In NIPS 17. MIT Press, Cambridge, MA, 2005.
    • (2005) NIPS , vol.17
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 20
    • 24944435111 scopus 로고    scopus 로고
    • Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine
    • J. Zhang, K. Ma, M. Er, and V. Chong. Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. International Workshop on Advanced Image Technology, pages 207-211, 2004.
    • (2004) International Workshop on Advanced Image Technology , pp. 207-211
    • Zhang, J.1    Ma, K.2    Er, M.3    Chong, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.