메뉴 건너뛰기




Volumn 5163 LNCS, Issue PART 1, 2008, Pages 443-451

Neural network ensembles for classification problems using multiobjective genetic algorithms

Author keywords

Genetic algorithms; Multiple objective programming; Neural networks

Indexed keywords

CLASSIFICATION ERRORS; ERROR FUNCTION; MULTI OBJECTIVE; MULTI-OBJECTIVE GENETIC ALGORITHM; MULTIPLE OBJECTIVE PROGRAMMING; NEURAL NETWORK ENSEMBLES; TRAINING PATTERNS;

EID: 58849096388     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-87536-9_46     Document Type: Conference Paper
Times cited : (4)

References (18)
  • 1
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization
    • IEEE-Press, Canberra
    • Abass, H.A.: Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization. In: IEEE Congress on Evolutionary Computation (CEC 2003), vol. 3, pp. 2074-2080. IEEE-Press, Canberra (2003)
    • (2003) IEEE Congress on Evolutionary Computation (CEC , vol.3 , pp. 2074-2080
    • Abass, H.A.1
  • 2
    • 32144456690 scopus 로고    scopus 로고
    • DIVACE: Diverse and accurate ensemble learning algorithm
    • Yang, Z.R, Yin, H, Everson, R.M, eds, IDEAL 2004, Springer, Heidelberg
    • Chandra, A., Yao, X.: DIVACE: Diverse and accurate ensemble learning algorithm. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 619-625. Springer, Heidelberg (2004)
    • (2004) LNCS , vol.3177 , pp. 619-625
    • Chandra, A.1    Yao, X.2
  • 3
    • 84887000710 scopus 로고    scopus 로고
    • Chandra, A., Yao, X.: Evolutionary framework for the construction of diverse hybrid ensembles. In: 13thEuropean Symposium on Artificial Neural Networks (ESANN 2005), pp. 253-258. d-side pub., Bruges (2004)
    • Chandra, A., Yao, X.: Evolutionary framework for the construction of diverse hybrid ensembles. In: 13thEuropean Symposium on Artificial Neural Networks (ESANN 2005), pp. 253-258. d-side pub., Bruges (2004)
  • 6
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods. A survey and categorisation
    • Gavin, J., Wyatt, H., Yao, X.: Diversity creation methods. A survey and categorisation. Information Fusion 6(1), 5-20 (2004)
    • (2004) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Gavin, J.1    Wyatt, H.2    Yao, X.3
  • 8
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Islam, M., Yao, X., Murase, K.A.: A constructive algorithm for training cooperative neural network ensembles. IEEE Transactions on neural networks 14(4), 820-834 (2003)
    • (2003) IEEE Transactions on neural networks , vol.14 , Issue.4 , pp. 820-834
    • Islam, M.1    Yao, X.2    Murase, K.A.3
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Machine learning 24(2), 123-140 (1996)
    • (1996) Machine learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 12
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • Webb, G.I.: Multiboosting: A technique for combining boosting and wagging. Machine learning 40(2), 159-196 (2000)
    • (2000) Machine learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 13
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regresion: A statistical view of boosting
    • Friedman, J., Hastie, T., Tibshirani, T.: Additive logistic regresion: A statistical view of boosting. Annals Statistics 28(2), 337-407 (2000)
    • (2000) Annals Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, T.3
  • 14
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensembles with negative correlation learning. IEEE Trans. Evol. Comput. 4, 380-387 (2000)
    • (2000) IEEE Trans. Evol. Comput , vol.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 16
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, ad randomization
    • Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, ad randomization. Machine learning 40, 139-157 (2001)
    • (2001) Machine learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 17
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski, S., Zenko, B.: Is combining classifiers with stacking better than selecting the best one? Machine learning 54, 255-273 (2004)
    • (2004) Machine learning , vol.54 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 18
    • 0037365188 scopus 로고    scopus 로고
    • Combining classifiers with meta decision trees
    • Springer, Heidelberg
    • Todorovski, L., Dzeroski, S.: Combining classifiers with meta decision trees. Machine learning, vol. 50, pp. 223-249. Springer, Heidelberg (2003)
    • (2003) Machine learning , vol.50 , pp. 223-249
    • Todorovski, L.1    Dzeroski, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.