메뉴 건너뛰기




Volumn 458, Issue , 2008, Pages 159-183

Peptide bioinformatics: Peptide classification using peptide machines

Author keywords

bioinformatics; peptide classification; peptide machines

Indexed keywords

PEPTIDE; PROTEIN;

EID: 58149393648     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-60327-101-1_9     Document Type: Article
Times cited : (5)

References (58)
  • 1
    • 0014405092 scopus 로고
    • On the active site of proteases, 3 Mapping the active site of papain; specific peptide inhibitors of papain
    • Schechter I, Berger A (1968) On the active site of proteases, 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Comms 32:898.
    • (1968) Biochem Biophys Res Comms , vol.32 , pp. 898
    • Schechter, I.1    Berger, A.2
  • 2
    • 0033579464 scopus 로고    scopus 로고
    • Sequence and structure based prediction of eukaryotic protein phosphorylation sites
    • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351-1362.
    • (1999) J Mol Biol , vol.294 , pp. 1351-1362
    • Blom, N.1    Gammeltoft, S.2    Brunak, S.3
  • 3
    • 0002172016 scopus 로고
    • The carbohydrates of glycoproteins
    • GinsburgV, Robins PW (eds) Wiley, New York
    • Kobata A (1984) The carbohydrates of glycoproteins. In: GinsburgV, Robins PW (eds) Biology of carbohydrates. Wiley, New York.
    • (1984) Biology of Carbohydrates
    • Kobata, A.1
  • 7
    • 20744437001 scopus 로고    scopus 로고
    • RONN: Use of the bio-basis function neural network technique for the detection of natively disordered regions in proteins
    • Yang ZR, Thomson R, McNeil P, Esnouf R (2005) RONN: Use of the bio-basis function neural network technique for the detection of natively disordered regions in proteins. Bioinformatics 21:3369-3376.
    • (2005) Bioinformatics , vol.21 , pp. 3369-3376
    • Yang, Z.R.1    Thomson, R.2    Mcneil, P.3    Esnouf, R.4
  • 8
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Molec Biol 202:865-884.
    • (1988) J Molec Biol , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 9
    • 0141506120 scopus 로고    scopus 로고
    • Characterising proteolytic cleavage site activity using bio-basis function neural networks
    • Thomson R, Hodgman TC, Yang ZR, Doyle AK (2003) Characterising proteolytic cleavage site activity using bio-basis function neural networks. Bioinformatics 19:1741-1747.
    • (2003) Bioinformatics , vol.19 , pp. 1741-1747
    • Thomson, R.1    Hodgman, T.C.2    Yang, Z.R.3    Doyle, A.K.4
  • 10
    • 13844272392 scopus 로고    scopus 로고
    • A novel neural network method in mining molecular sequence data
    • Yang ZR, Thomson R (2005) A novel neural network method in mining molecular sequence data. IEEE Trans on Neural Networks 16:263-274.
    • (2005) IEEE Trans on Neural Networks , vol.16 , pp. 263-274
    • Yang, Z.R.1    Thomson, R.2
  • 12
    • 0000228203 scopus 로고
    • A model of evolutionary change in proteins. matrices for detecting distant relationships
    • Dayhoff MO (ed
    • Dayhoff MO, Schwartz RM, Orcutt BC 1978 A model of evolutionary change in proteins. matrices for detecting distant relationships. In: Dayhoff MO (ed) Atlas of protein sequence and structure, 5:345-358.
    • (1978) Atlas of Protein Sequence and Structure , vol.5 , pp. 345-358
    • Dayhoff, M.O.1    Schwartz, R.M.2    Orcutt, B.C.3
  • 13
    • 0027361123 scopus 로고
    • A structural basis for sequence comparisons-An evaluation of scoring methodologies
    • Johnson MS, Overington JP (1993) A structural basis for sequence comparisons-An evaluation of scoring methodologies. J Mol Biol 233:716-738.
    • (1993) J Mol Biol , vol.233 , pp. 716-738
    • Johnson, M.S.1    Overington, J.P.2
  • 14
    • 20744453541 scopus 로고    scopus 로고
    • Application of support vector machines to biology
    • Yang ZR (2004) Application of support vector machines to biology. Briefings in Bioinformatics 5:328-338.
    • (2004) Briefings in Bioinformatics , vol.5 , pp. 328-338
    • Yang, Z.R.1
  • 15
    • 0024449801 scopus 로고
    • Linear optimization of predictors for secondary structure: Application to transbilayer segments of membrane proteins
    • Edelman J, White SH (1989) Linear optimization of predictors for secondary structure: Application to transbilayer segments of membrane proteins. J Mole Biol 210:195-209.
    • (1989) J Mole Biol , vol.210 , pp. 195-209
    • Edelman, J.1    White, S.H.2
  • 16
    • 4644262747 scopus 로고    scopus 로고
    • Reduced bio-basis function neural networks for protease cleavage site prediction
    • Yang ZR, Berry E (2004) Reduced bio-basis function neural networks for protease cleavage site prediction. J Comput Biol Bioinformatics 2:511-531.
    • (2004) J Comput Biol Bioinformatics , vol.2 , pp. 511-531
    • Yang, Z.R.1    Berry, E.2
  • 17
    • 20744444880 scopus 로고    scopus 로고
    • Predict disordered proteins using bio-basis function neural networks
    • Thomson R, Esnouf R (2004) Predict disordered proteins using bio-basis function neural networks. Lecture Notes in Computer Science 3177:19-27.
    • (2004) Lecture Notes in Computer Science , vol.3177 , pp. 19-27
    • Thomson, R.1    Esnouf, R.2
  • 18
    • 0842301301 scopus 로고    scopus 로고
    • Reduced bio basis function neural network for identification of protein phosphorylation sites: Comparison with pattern recognition algorithms
    • Berry E, Dalby A, Yang ZR (2004) Reduced bio basis function neural network for identification of protein phosphorylation sites: Comparison with pattern recognition algorithms. Comput Biol Chem 28:75-85.
    • (2004) Comput Biol Chem , vol.28 , pp. 75-85
    • Berry, E.1    Dalby, A.2    Yang, Z.R.3
  • 19
    • 23844495275 scopus 로고    scopus 로고
    • Predicting the phosphorylation sites using hidden Markov models and machine learning methods
    • Senawongse P Dalby AD, Yang ZR (2005) Predicting the phosphorylation sites using hidden Markov models and machine learning methods. J Chem Info Comp Sci 45:1147-1152.
    • (2005) J Chem Info Comp Sci , vol.45 , pp. 1147-1152
    • Senawongse, P.1    Dalby, A.D.2    Yang, Z.R.3
  • 20
    • 1842439981 scopus 로고    scopus 로고
    • Bio-basis function neural networks for the prediction of the Olinkage sites in glyco-proteins
    • Yang ZR, Chou KC (2004) Bio-basis function neural networks for the prediction of the Olinkage sites in glyco-proteins. Bioinformatics 20:903-908.
    • (2004) Bioinformatics , vol.20 , pp. 903-908
    • Yang, Z.R.1    Chou, K.C.2
  • 21
    • 33645021017 scopus 로고    scopus 로고
    • Predict signal peptides using bio-basis function neural networks
    • Sidhu A, Yang ZR (2006) Predict signal peptides using bio-basis function neural networks. Applied Bioinformatics 5(1):13-19.
    • (2006) Applied Bioinformatics , vol.5 , Issue.1 , pp. 13-19
    • Sidhu, A.1    Yang, Z.R.2
  • 22
    • 33745043489 scopus 로고    scopus 로고
    • A bio-basis function neural network for protein peptide cleavage activity characterisation
    • Yang ZR, Dry J, Thomson R, Hodgman C (2006) A bio-basis function neural network for protein peptide cleavage activity characterisation. Neural Networks 19:401-407.
    • (2006) Neural Networks , vol.19 , pp. 401-407
    • Yang, Z.R.1    Dry, J.2    Thomson, R.3    Hodgman, C.4
  • 23
    • 26844446068 scopus 로고    scopus 로고
    • Bio-kernel self-organizing map for HIV drug resistance classification
    • Yang ZR, Young N (2005) Bio-kernel self-organizing map for HIV drug resistance classification. Lecture Notes in Computer Science 3610:179-184.
    • (2005) Lecture Notes in Computer Science , vol.3610 , pp. 179-184
    • Yang, Z.R.1    Young, N.2
  • 24
    • 18744369642 scopus 로고    scopus 로고
    • Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks
    • Yang ZR (2005) Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks. Bioinformatics 21:1831-1837.
    • (2005) Bioinformatics , vol.21 , pp. 1831-1837
    • Yang, Z.R.1
  • 25
    • 20744440333 scopus 로고    scopus 로고
    • Mining SARS-coV protease cleavage data using decision trees, a novel method for decisive template searching
    • Yang ZR (2005) Mining SARS-coV protease cleavage data using decision trees, a novel method for decisive template searching. Bioinformatics 21:2644-2650.
    • (2005) Bioinformatics , vol.21 , pp. 2644-2650
    • Yang, Z.R.1
  • 26
    • 34547404537 scopus 로고    scopus 로고
    • Predict T-cell epitopes using bio-support vector machines
    • Yang ZR, Johanathan F (2005) Predict T-cell epitopes using bio-support vector machines. J Chem Inform Comp Sci 45:1142-1148.
    • (2005) J Chem Inform Comp Sci , vol.45 , pp. 1142-1148
    • Yang, Z.R.1    Johanathan, F.2
  • 29
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Machine Learning Res 1:211-244.
    • (2001) J Machine Learning Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 30
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S, Cowan CFN, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans on Neural Networks 2:302-309.
    • (1991) IEEE Trans on Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cfn, C.2    Grant, P.M.3
  • 31
    • 34249859608 scopus 로고    scopus 로고
    • Bio-support vector machines for computational proteomics
    • Yang ZR, Chou KC (2003) Bio-support vector machines for computational proteomics. Bioinformatics 19:1-7.
    • (2003) Bioinformatics , vol.19 , pp. 1-7
    • Yang, Z.R.1    Chou, K.C.2
  • 32
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay DJ (1992) A practical Bayesian framework for backpropagation networks. Neural Computation 4:448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.1
  • 33
    • 13644251956 scopus 로고    scopus 로고
    • Orthogonal kernel machine in prediction of functional sites in proteins
    • Yang ZR (2005) Orthogonal kernel machine in prediction of functional sites in proteins. IEEE Trans on Systems, Man and Cybernetics 35:100-106.
    • (2005) IEEE Trans on Systems, Man and Cybernetics , vol.35 , pp. 100-106
    • Yang, Z.R.1
  • 35
    • 0026577882 scopus 로고
    • How antibodies block HIV infection: Paths to an AIDS vaccine
    • Putney, S (1992) How antibodies block HIV infection: Paths to an AIDS vaccine. Trends in Biochem Sci 7:191-196.
    • (1992) Trends in Biochem Sci , vol.7 , pp. 191-196
    • Putney, S.1
  • 36
    • 0038270791 scopus 로고    scopus 로고
    • The need for a global HIV vaccine enterprise
    • Klausner RD et al. (2003) The need for a global HIV vaccine enterprise. Science 300:2036-2039.
    • (2003) Science , vol.300 , pp. 2036-2039
    • Klausner, R.D.1
  • 38
    • 0033001019 scopus 로고    scopus 로고
    • Molecular mechanics analysis of drug-resistant mutants of HIV protease
    • Weber IT, Harrison RW (1999) Molecular mechanics analysis of drug-resistant mutants of HIV protease. Protein Eng 12:469-474.
    • (1999) Protein Eng , vol.12 , pp. 469-474
    • Weber, I.T.1    Harrison, R.W.2
  • 39
    • 16244403666 scopus 로고    scopus 로고
    • Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach
    • Jenwitheesuk E, Samudrala R (2005) Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach. Antivir Ther 10:157-166.
    • (2005) Antivir Ther , vol.10 , pp. 157-166
    • Jenwitheesuk, E.1    Samudrala, R.2
  • 40
    • 4444319238 scopus 로고    scopus 로고
    • Correlation between rules-based interpretation and virtual phenotype interpretation of HIV-1 genotypes for predicting drug resistance in HIV-infected individuals
    • Gallego O, Martin-Carbonero L, Aguero J, de Mendoza C, Corral A, Soriano V (2004) Correlation between rules-based interpretation and virtual phenotype interpretation of HIV-1 genotypes for predicting drug resistance in HIV-infected individuals. J Virol Methods 121:115-118.
    • (2004) J Virol Methods , vol.121 , pp. 115-118
    • Gallego, O.1    Martin-Carbonero, L.2    Aguero, J.3    De Mendoza, C.4    Corral, A.5    Soriano, V.6
  • 41
    • 0038238324 scopus 로고    scopus 로고
    • Variable prediction of antiretroviral treatment outcome by different systems for interpreting genotypic human immunodeficiency virus type 1 drug resistance
    • De Luca A, Cingolani A et al. (2003) Variable prediction of antiretroviral treatment outcome by different systems for interpreting genotypic human immunodeficiency virus type 1 drug resistance. J Infect Dis 187:1934-1943.
    • (2003) J Infect Dis , vol.187 , pp. 1934-1943
    • De Luca, A.1    Cingolani, A.2
  • 42
    • 0041341885 scopus 로고    scopus 로고
    • Structure-based phenotyping predicts HIV-1 protease inhibitor resistance
    • Shenderovich MD, Kagan RM, Heseltine PN, Ramnarayan K (2003) Structure-based phenotyping predicts HIV-1 protease inhibitor resistance. Protein Sci 12:1706-1718.
    • (2003) Protein Sci , vol.12 , pp. 1706-1718
    • Shenderovich, M.D.1    Kagan, R.M.2    Heseltine, P.N.3    Ramnarayan, K.4
  • 43
    • 0037062513 scopus 로고    scopus 로고
    • Diversity and complexity of HIV-1 drug resistance: A bioinformatics approach to predicting phenotype from genotype
    • Brenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T, Hoffmann D, Korn K, Selbig J (2002) Diversity and complexity of HIV-1 drug resistance: A bioinformatics approach to predicting phenotype from genotype. PNAS 99:8271-8276.
    • (2002) PNAS , vol.99 , pp. 8271-8276
    • Brenwinkel, N.1    Schmidt, B.2    Walter, H.3    Kaiser, R.4    Lengauer, T.5    Hoffmann, D.6    Korn, K.7    Selbig, J.8
  • 44
    • 0042154495 scopus 로고    scopus 로고
    • Comparison of nine resistance interpretation systems for HIV-1 genotyping
    • Sturmer M, Doerr HW, Staszewski S, Preiser W (2003) Comparison of nine resistance interpretation systems for HIV-1 genotyping. Antivir Ther 8:239-244.
    • (2003) Antivir Ther , vol.8 , pp. 239-244
    • Sturmer, M.1    Doerr, H.W.2    Staszewski, S.3    Preiser, W.4
  • 45
    • 0036639447 scopus 로고    scopus 로고
    • The role of resistance characteristics of viral strains in the prediction of the response to antiretroviral therapy in HIV infection
    • Vergu E, Mallet A, Golmard JL (2002) The role of resistance characteristics of viral strains in the prediction of the response to antiretroviral therapy in HIV infection. J Acquir Immune Defic Syndr 30:263-270.
    • (2002) J Acquir Immune Defic Syndr , vol.30 , pp. 263-270
    • Vergu, E.1    Mallet, A.2    Golmard, J.L.3
  • 46
    • 4444333580 scopus 로고    scopus 로고
    • Use of viral load measured after 4 weeks of highly active antiretroviral therapy to predict virologic putcome at 24 weeks for HIV-1-positive individuals
    • Smith CJ, Staszewski S et al. (2004) Use of viral load measured after 4 weeks of highly active antiretroviral therapy to predict virologic putcome at 24 weeks for HIV-1-positive individuals. J Acquir Immune Defic Syndr 37:1155-1159.
    • (2004) J Acquir Immune Defic Syndr , vol.37 , pp. 1155-1159
    • Smith, C.J.1    Staszewski, S.2
  • 47
    • 0043092351 scopus 로고    scopus 로고
    • Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes
    • Beerenwinkel N, Daumer M et al. (2003) Geno2pheno: Estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res 31:3850-3855.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3850-3855
    • Beerenwinkel, N.1    Daumer, M.2
  • 48
    • 0036189326 scopus 로고    scopus 로고
    • Characterizing the relationship between HIV-1 genotype and phenotype: Prediction-based classification
    • Foulkes AS, De GV (2002) Characterizing the relationship between HIV-1 genotype and phenotype: Prediction-based classification. Biometrics 58:145-156.
    • (2002) Biometrics , vol.58 , pp. 145-156
    • Foulkes, A.S.1    De, G.V.2
  • 49
    • 4344714256 scopus 로고    scopus 로고
    • Construction, training and clinical validation of an interpretation system for genotypic HIV-1 drug resistance based on fuzzy rules revised by virological outcomes
    • De Luca A, Vendittelli et al. (2004) Construction, training and clinical validation of an interpretation system for genotypic HIV-1 drug resistance based on fuzzy rules revised by virological outcomes. Antivir Ther 9:583-593.
    • (2004) Antivir Ther , vol.9 , pp. 583-593
    • De Luca, A.1    Vendittelli2
  • 50
    • 0037248697 scopus 로고    scopus 로고
    • Predicting HIV drug resistance with neural networks
    • Draghici S, Potter RB (2003) Predicting HIV drug resistance with neural networks. Bioinformatics 19:98-107.
    • (2003) Bioinformatics , vol.19 , pp. 98-107
    • Draghici, S.1    Potter, R.B.2
  • 51
    • 0032947107 scopus 로고    scopus 로고
    • Human immunodeficiency virus reverse transcriptase and protease sequence database
    • Shafer RW, Stevenson D, Chan B (1999) Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res 27:348-352.
    • (1999) Nucleic Acids Res , vol.27 , pp. 348-352
    • Shafer, R.W.1    Stevenson, D.2    Chan, B.3
  • 52
    • 0033033193 scopus 로고    scopus 로고
    • Rapid, phenotypic HIV-1 drug sensitivity assay for protease and reverse transcriptase inhibitors
    • Walter H, Schmidt B, Korn K, Vandamme AM, Harrer T, Uberla K (1999) Rapid, phenotypic HIV-1 drug sensitivity assay for protease and reverse transcriptase inhibitors. J Clin Virol.13:71-80.
    • (1999) J Clin Virol.13 , pp. 71-80
    • Walter, H.1    Schmidt, B.2    Korn, K.3    Vandamme, A.M.4    Harrer, T.5    Uberla, K.6
  • 54
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442-451.
    • (1975) Biochim Biophys Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 55
    • 0000357440 scopus 로고
    • Classification and nomenclature of virus: Fifth report of the International Committee on Taxonomy of Viruses
    • Francki R, Fauquet C, Knudson D, Brown F (1991) Classification and nomenclature of virus: Fifth report of the International Committee on Taxonomy of Viruses. Arch Virology 2:223s.
    • (1991) Arch Virology , vol.2
    • Francki, R.1    Fauquet, C.2    Knudson, D.3    Brown, F.4
  • 56
    • 0024509701 scopus 로고
    • Isolation of a cDNA clone derived from a blood-borne non-A non-B viral hepatitis genome
    • Choo Q, Kuo G, Weiner AJ, Overby L, Bradley D, Houghton M (1989) Isolation of a cDNA clone derived from a blood-borne non-A non-B viral hepatitis genome. Science 244:359-362.
    • (1989) Science , vol.244 , pp. 359-362
    • Choo, Q.1    Kuo, G.2    Weiner, A.J.3    Overby, L.4    Bradley, D.5    Houghton, M.6
  • 57
    • 0024511734 scopus 로고
    • An assay for circulating antibodies to a major etiologic virus of human non-A non-B hepatitis
    • Kuo G, Choo Q et al. (1989) An assay for circulating antibodies to a major etiologic virus of human non-A non-B hepatitis. Science 244:362-364.
    • (1989) Science , vol.244 , pp. 362-364
    • Kuo, G.1    Choo, Q.2
  • 58
    • 33749529111 scopus 로고    scopus 로고
    • Predicting hepatitis C virus protease cleavage sites using generalised linear indicator regression models
    • Yang ZR (2006) Predicting hepatitis C virus protease cleavage sites using generalised linear indicator regression models. IEEE Trans on Biomedical Engineering 53:2119-2123.
    • (2006) IEEE Trans on Biomedical Engineering , vol.53 , pp. 2119-2123
    • Yang, Z.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.