메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 2847-2880

Structural learning of chain graphs via decomposition

Author keywords

Chain graph; Conditional independence; Decomposition; Graphical model; Structural learning

Indexed keywords

BAYESIAN NETWORKS; DECOMPOSITION; GRAPHIC METHODS; INFERENCE ENGINES; SPEECH RECOGNITION;

EID: 58149308167     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (54)

References (35)
  • 1
    • 0003535936 scopus 로고    scopus 로고
    • John Wiley & Sons, Hoboken, NJ, 2nd edition
    • A. Agresti. Categorical Data Analysis. John Wiley & Sons, Hoboken, NJ., 2nd edition, 2002.
    • (2002) Categorical Data Analysis
    • Agresti, A.1
  • 5
    • 33747856187 scopus 로고    scopus 로고
    • Protein calassification using probabilistic chain graphs and the gene ontology structure
    • S. Carroll and V. Pavlovic. Protein calassification using probabilistic chain graphs and the gene ontology structure. Bioinformatics, 22(15):1871-1878, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.15 , pp. 1871-1878
    • Carroll, S.1    Pavlovic, V.2
  • 6
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of bayesian-network structures
    • D. M. Chickering. Learning equivalence classes of bayesian-network structures. J. Mach. Learn. Res., 2:445-498, 2002.
    • (2002) J. Mach. Learn. Res , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 9
    • 37249059395 scopus 로고    scopus 로고
    • A sinful approach to gaussian graphical model selection
    • M. Drton and M. Perlman. A sinful approach to gaussian graphical model selection. J. Stat. Plan. Infer., 138:1179-1200, 2008.
    • (2008) J. Stat. Plan. Infer , vol.138 , pp. 1179-1200
    • Drton, M.1    Perlman, M.2
  • 12
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • doi: doi:10.1093/biostatistics/kxm045
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics,2001. doi: doi:10.1093/biostatistics/kxm045.
    • (2001) Biostatistics
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 0037262841 scopus 로고    scopus 로고
    • Being bayesian about network structure: A bayesian approach to structure discovery in bayesian networks
    • N. Friedman and D. Koller. Being bayesian about network structure: a bayesian approach to structure discovery in bayesian networks. Mach. Learn., 50:95-126, 2003.
    • (2003) Mach. Learn , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 15
    • 0001546180 scopus 로고
    • The chain graph markov property
    • M. Frydenberg. The chain graph markov property. Scand. J. Statist., 17:333-353, 1990.
    • (1990) Scand. J. Statist , vol.17 , pp. 333-353
    • Frydenberg, M.1
  • 16
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the pcalgorithm
    • M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the pcalgorithm. J. Mach. Learn. Res., 8:616-636, 2007.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 616-636
    • Kalisch, M.1    Bühlmann, P.2
  • 18
    • 0036420729 scopus 로고    scopus 로고
    • Chain graph models and their causal interpretations (with discussion)
    • S. L. Lauritzen and T. S. Richardson. Chain graph models and their causal interpretations (with discussion). J. R. Statist. Soc. B, 64:321-361, 2002.
    • (2002) J. R. Statist. Soc. B , vol.64 , pp. 321-361
    • Lauritzen, S.L.1    Richardson, T.S.2
  • 20
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso. Ann. Statist., 34:1436-1462, 2006.
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 22
    • 58149288293 scopus 로고    scopus 로고
    • 1 -regularized logistic regression. Technical Report 750, Department of Statistics, University of California, Berkeley., 2008. URL http://www.stat.berkeley.edu/tech-report/750. pdf.
    • 1 -regularized logistic regression. Technical Report 750, Department of Statistics, University of California, Berkeley., 2008. URL http://www.stat.berkeley.edu/tech-report/750. pdf.
  • 23
    • 33645062435 scopus 로고    scopus 로고
    • On block ordering of variables in graphical modelling
    • A. Roverato and L. La Rocca. On block ordering of variables in graphical modelling. Scand. J. Statist., 33:65-81, 2006.
    • (2006) Scand. J. Statist , vol.33 , pp. 65-81
    • Roverato, A.1    La Rocca, L.2
  • 25
    • 0033474865 scopus 로고    scopus 로고
    • A discrete variable chain graph for applicants for credit
    • E. Stanghellini, K. J. McConway, and D. J. Hand. A discrete variable chain graph for applicants for credit. J. R. Statist. Soc. C, 48:239-251, 1999.
    • (1999) J. R. Statist. Soc. C , vol.48 , pp. 239-251
    • Stanghellini, E.1    McConway, K.J.2    Hand, D.J.3
  • 26
    • 0031206655 scopus 로고    scopus 로고
    • A recovery algorithm for chain graphs
    • M. Studený. A recovery algorithm for chain graphs. Int. J. Approx. Reasoning, 17:265-293, 1997.
    • (1997) Int. J. Approx. Reasoning , vol.17 , pp. 265-293
    • Studený, M.1
  • 27
    • 0032356059 scopus 로고    scopus 로고
    • On chain graph models for description of conditional independence structures
    • M. Studený and R. R. Bouckaert. On chain graph models for description of conditional independence structures. Ann. Statist., 26:1434-1495, 2001.
    • (2001) Ann. Statist , vol.26 , pp. 1434-1495
    • Studený, M.1    Bouckaert, R.R.2
  • 28
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing bayesian network structure learning algorithm
    • I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing bayesian network structure learning algorithm. Mach. Learn., 65:31-78, 2006.
    • (2006) Mach. Learn , vol.65 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 30
    • 0000243504 scopus 로고
    • Graphical and recursive models for contingency tables
    • N. Wermuth and S. L. Lauritzen. Graphical and recursive models for contingency tables. Biometrika, 72:537-552, 1983.
    • (1983) Biometrika , vol.72 , pp. 537-552
    • Wermuth, N.1    Lauritzen, S.L.2
  • 31
    • 0002515017 scopus 로고
    • On substantive research hypotheses, conditional independence graphs and graphical chain models
    • N. Wermuth and S. L. Lauritzen. On substantive research hypotheses, conditional independence graphs and graphical chain models. J. R. Statist. Soc. B, 52:21-50, 1990.
    • (1990) J. R. Statist. Soc. B , vol.52 , pp. 21-50
    • Wermuth, N.1    Lauritzen, S.L.2
  • 33
    • 0001972601 scopus 로고
    • The large-sample distribution of the likelihood ratio for testing composite hypotheses
    • S. Wilks. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat., 20:595-601, 1938.
    • (1938) Ann. Math. Stat , vol.20 , pp. 595-601
    • Wilks, S.1
  • 34
    • 41549133874 scopus 로고    scopus 로고
    • A recursive method for structural learning of directed acyclic graphs
    • X. Xie and Z. Geng. A recursive method for structural learning of directed acyclic graphs. J. Mach. Learn. Res., 9:459-483, 2008.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 459-483
    • Xie, X.1    Geng, Z.2
  • 35
    • 32944455978 scopus 로고    scopus 로고
    • Decomposition of structural learning about directed acyclic graphs
    • X. Xie, Z. Geng, and Q. Zhao. Decomposition of structural learning about directed acyclic graphs. Artif. Intell., 170:442-439, 2006.
    • (2006) Artif. Intell , vol.170 , pp. 442-439
    • Xie, X.1    Geng, Z.2    Zhao, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.